Закон обратимости световых лучей

Пусть на какую-либо идеальную оптическую систему падает луч А и выходит из нее соответствующий ему луч В. Если пустить новый падающий луч навстречу В, получим новый выходящий из системы луч, идущий навстречу А.

Закон прямолинейности распространения света

В однородной среде свет распространяется прямолинейно.

Мы воспринимаем источник света или предмет, от которого упал отраженный свет, на продолжении лучей, попавших в глаз. Этим законом объясняется образование геометрической тени, фотографирование камерой-обскурой (безлинзовой камерой с маленьким отверстием).

Законы отражения

1. Луч падающий, перпендикуляр к границе двух сред в точке падения и луч отраженный лежат в одной плоскости. То, что две из перечисленных прямых лежат в одной плоскости, - не закон, так как любые две пересекающиеся прямые удовлетворяют этому геометрическому положению. Физическим содержанием закона является нахождение третьей прямой и той же плоскости. Следовательно, углы падения и отражения лежат в плоскости падения.

2. Угол падения равен углу отражения (изменяя произвольно угол падения, получаем такое же изменение угла отражения): i = j

Различают отражения зеркальное и диффузное. Зеркальным называется отражение, при котором падающий на поверхность параллельный пучок лучей света остается параллельным (рис.2). Диффузным называется отражение, при котором падающий параллельный пучок рассеивается

Законы преломления

1. Луч падающий, перпендикуляр к границе двух сред в точке падения и преломленный луч лежат в одной плоскости (аналогично первому закону отражения, смысл этого закона в том, что третья из перечисленных прямых попала в плоскость, положение которой определяют первые две. Это плоскость падения).

2. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данной пары сред (то есть не изменяется при произвольном изменении угла падения и соответственном изменении угла преломления). Эта постоянная называется показателем преломления (n 21) второй среды относительно первой:

Линза - система двух, чаще всего сферических, преломляющих поверхностей, ограничивающих прозрачное тело. Обычно линзы делают стеклянными.

Собирающие и рассеивающие линзы:

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой.

Линзы входят в состав практически всех оптических приборов. Линзы бывают собирающими и рассеивающими. Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше


Фотоаппаратом называется прибор, для осуществления фотосъемки - первого из процессов получения изображения фотографическим способом.

Основные части фотоаппарата:
1) фотопленка;
2) корпус;
3) затвор;
4) объектив;
5) диафрагма.

В обычном устройстве зеркального цифрового фотоаппарата свет проходит через объектив.Затем он достигает диафрагмы, которая регулирует его количество затем свет доходит до зеркала в устройстве зеркального цифрового фотоаппарата , отражается и проходит через призму чтобы перенаправить его в видоискатель. Информационный экран добавляет к изображению дополнительную информацию о кадре и экспозиции.
В момент, когда происходит фотографирование, зеркало устройства фотоаппарата (цифра 6 на изображении) поднимается, открывается затвор фотоаппарата. В этот момент свет попадает прямо на матрицу фотоаппарата и происходит экспонирование кадра - фотографирование. Затем закрывается затвор, обратно опускается зеркало, и фото камера готова к следующему снимку. Необходимо понимать, что весь этот сложный процесс внутри происходит за доли секунды. Это и есть устройство зеркального цифрового фотоаппарата .

Свет проходит через отверстие, масштабируется и попадает на светочувствительный элемент внутри устройства фотоаппарата . Будь это пленочной камерой или зеркальной цифровой фотокамерой.

Глаз человека представляет собой сложную оптическую систему, которая состоит из роговицы, влаги передней камеры, хрусталика и стекловидного тела. Преломляющая сила глаза зависит от величины радиусов кривизны передней поверхности роговицы, передней и задней поверхностей хрусталика, расстояний между ними и показателей преломления роговицы, хрусталика, водянистой влаги и стекловидного тела. Оптическая сила задней поверхности роговицы не учитывается, поскольку показатели преломления ткани роговицы и влаги передней камеры одинаковы.

Приближенно можно сказать, что преломляющие поверхности глаза сферичны и их оптические оси совпадают, т. е. глаз является центрированной cистемой. В действительности же оптическая система глаза обладает многими погрешностями. Так, роговица сферична только в центральной зоне, показатель преломления наружных слоев хрусталика меньше, чем внутренних, неодинакова степень преломления лучей в двух взаимно перпендикулярных плоскостях. Помимо того, оптические характеристики в разных глазах существенно различаются, причем определить их трудно. Все это осложняет вычисление оптических констант глаза.

Аккомодация глаза - изменение преломляющей силы глаза, обеспечивающее его способность ясно видеть предметы, находящиеся на различных расстояниях. Физиологический механизм аккомодации состоит в том, что при сокращении волокон ресничной мышцы глаза, иннервируемой глазодвигательным и симпатическими нервами, происходит расслабление ресничного пояска, с помощью которого хрусталик прикреплен к ресничному телу. При этом уменьшается натяжение сумки хрусталика, и он благодаря своим эластичным свойствам становится более выпуклым. Расслабление ресничной мышцы ведет к уплощению хрусталика. Аккомодационная способность глаза, хорошо развитая у детей и молодежи, уменьшается после 40 лет в связи со старением ресничного тела и хрусталика. Это проявляется дальнозоркостью, затрудненностью чтения, чувством усталости и болью в глазах. Снижение Способности к аккомодации можно заподозрить, если человеку приходится удалять от себя предметы, находящиеся в поле зрения, для лучшего их рассмотрения.

Адаптацией глаза называется процесс приспосабливания зрения к различны условиям освещения за счет изменения световой чувствительности зрительного анализатора. Человеческий глаз имеет очень большую адаптационную способность: ночью мы видим при свете звезд, а днем - при свете солнца. Это становится возможным, благодаря светочувствительным клеткам сетчатки - палочкам. Палочки обладают очень высокой световой чувствительностью и обеспечивают восприятие предметов в сумерки или ночью.

У этого термина существуют и другие значения, см. Радиация (значения).

Ионизи́рующееизлуче́ние - в самом общем смысле - различные виды микрочастиц и физических полей, способные ионизировать вещество. В более узком смысле к ионизирующему излучению не относят ультрафиолетовое излучение и излучение видимого диапазона света, которое в отдельных случаях также может быть ионизирующим. Излучение микроволнового и радиодиапазонов не является ионизирующим, поскольку его энергии недостаточно для ионизации атомов и молекул в основном состоянии.Содержание [показать]

Природа ионизирующего излучения

Наиболее значимы следующие типы ионизирующего излучения:

Коротковолновое электромагнитное излучение (поток фотонов высоких энергий):

рентгеновское излучение;

гамма-излучение.

Потоки частиц:

бета-частиц (электронов и позитронов);

альфа-частиц (ядер атома гелия-4);

нейтронов;

протонов, других ионов, мюонов и др.;

осколков деления (тяжёлых ионов, возникающих при делении ядер).

[править]

Источники ионизирующего излучения

Природные источники ионизирующего излучения:

Спонтанный радиоактивный распад радионуклидов.

Термоядерные реакции, например на Солнце.

Индуцированные ядерные реакции в результате попадания в ядро высокоэнергетичных элементарных частиц или слияния ядер.

Космические лучи.

Искусственные источники ионизирующего излучения:

Искусственные радионуклиды.

Ядерные реакторы.

Ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение).

Рентгеновский аппарат как разновидность ускорителей, генерирует тормозное рентгеновское излучение.

[править]

Наведённая радиоактивность

Многие стабильные атомы в результате облучения и соответствующей индуцированной ядерной реакции превращаются в нестабильные изотопы. В результате такого облучения стабильное вещество становится радиоактивным, причем тип вторичного ионизирующего излучения будет отличаться от первоначального облучения. Наиболее ярко такой эффект проявляется после нейтронного облучения.

[править]

Цепочка ядерных превращений

В процессе ядерного распада или синтеза возникают новые нуклиды, которые также могут быть нестабильны. В результате возникает цепочка ядерных превращений. Каждое превращение имеет свою вероятность и свой набор ионизирующих излучений. В результате интенсивность и характер излучений радиоактивного источника может значительно меняться со временем.

[править]

Измерение ионизирующих излучений

[править]

Методы измерения

См. также: Дозиметр

См. также: Детектор элементарных частиц

В качестве датчиков излучения в бытовом и промышленном применении наибольшее применение получили дозиметры на базе счётчиков Гейгера. Счетчик Гейгера - газоразрядный прибор, в котором ионизация газа излучением превращается в электрический ток между электродами. Как правило, такие приборы корректно регистрируют только гамма-излучение. Некоторые приборы снабжаются специальным фильтром, преобразующим бета-излучение в гамма-кванты за счет тормозного излучения. Счетчики Гейгера плохо селектируют излучения по энергии, для этого используют другую разновидность газоразрядного счетчика, т.н. пропорциональный счётчик.

Широкое применение в науке получили сцинтилляторы. Эти приборы преобразуют энергию излучения в видимый свет за счет поглощения излучения в специальном веществе. Вспышка света регистрируется фотоэлектронным умножителем. Сцинтилляторы хорошо разделяют излучение по энергиям.

Для исследования элементарных частиц применяют множество других методов, позволяющих полнее исследовать их свойства, например пузырьковая камера, камера Вильсона.

[править]

Единицы измерения

Эффективность взаимодействия ионизирующего излучения с веществом зависит от типа излучения, энергии частиц и сечения взаимодействия облучаемого вещества. Важные показатели взаимодействия ионизирующего излучения с веществом:

линейная передача энергии (ЛПЭ), показывающая, какую энергию излучение передаёт среде на единице длины пробега при единичной плотности вещества.

поглощённая доза излучения, показывающая, какая энергия излучения поглощается в единице массы вещества.

В Международной системе единиц СИ единицей поглощённой дозы является грэй (Гр, англ. gray, Gy), численно равный поглощённой энергии в 1 Дж на 1 кг массы вещества. Иногда встречается устаревшая внесистемная единица рад (англ. rad): доза, соответствующая поглощенной энергии 100 эрг на 1 грамм вещества. 1 рад = 0,01 Гр.

Также широко применяется устаревающее понятие экспозиционная доза излучения - величина, показывающая, какой заряд создаёт фотонное (гамма- или рентгеновское) излучение в единице объёма воздуха. Для этого обычно используют внесистемную единицу экспозиционной дозы рентген (Р, англ. roentgen, R): доза фотонного излучения, образующего ионы с зарядом в 1 ед. заряда СГСЭ ((1/3)·10−9 кулон) в 1 см³ воздуха. В системе СИ используется единица кулон на килограмм (Кл/кг, англ. C/kg): 1 Кл/кг = 3876 Р; 1 Р = 2,57976·10−4 Кл/кг.

Активность радиоактивного источника ионизирующего излучения определяется как среднее количество распадов ядер в единицу времени. Соответствующая единица в системе СИ беккерель (Бк, англ. Becquerel, Bq) обозначает количество распадов в секунду. Применяется также внесистемная единица кюри (Ки, англ. Ci). 1 Ки = 3,7·1010 Бк. Первоначальное определение этой единицы соответствовало активности 1 г радия-226.

Корпускулярное ионизирующее излучение также характеризуется кинетической энергией частиц. Для измерения этого параметра наиболее распространена внесистемная единица электронвольт (эВ). Как правило радиоактивный источник генерирует частицы с определенным спектром энергий. Датчики излучений также имеют неравномерную чувствительность по энергии частиц.

[править]

Физические свойства ионизирующих излучений

Альфа-излучение представляет собой поток альфа-частиц - ядер гелия-4. Альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги. Бета-излучение - это поток электронов, возникающих при бета-распаде; для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной в несколько миллиметров. Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом; для защиты эффективны тяжёлые элементы (свинец и т. д.), поглощающие МэВ-ные фотоны в слое толщиной несколько см. Проникающая способность всех видов ионизирующего излучения зависит от энергии.

По механизму взаимодействия с веществом выделяют непосредственно потоки заряженных частиц и косвенно ионизирующее излучение (потоки нейтральных элементарных частиц - фотонов и нейтронов). По механизму образования - первичное (рождённое в источнике) и вторичное (образованное в результате взаимодействия излучения другого типа с веществом) ионизирующее излучение.

Энергия частиц ионизирующего излучения лежит в диапазоне от нескольких сотен электронвольт (рентгеновское излучение, бета-излучение некоторых радионуклидов) до 1015 - 1020 и выше электронвольт (протоны космического излучения, для которых не обнаружено верхнего предела по энергии).

Длина пробега и проникающая способность сильно различаются - от микрометров в конденсированной среде (альфа-излучение радионуклидов, осколки деления) до многих километров (высокоэнергетические мюоны космических лучей).

[править]

Биологическое действие ионизирующих излучений

Единицы измерения

Разные типы ионизирующего излучения обладают разным разрушительным эффектом и разным способом воздействия на биологические ткани. Соответственно, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятие относительной биологической эффективности излучения, которая измеряется с помощью коэффициента качества. Для рентгеновского, гамма- и бета-излучений коэффициент качества принят за 1. Альфа-излучение и осколки ядер имеют коэффициент качества составляет 10…20. Нейтроны - 3…20 в зависимости от энергии. Для заряженных частиц биологическая эффективность прямо связана с линейной передачей энергии данного типа частиц (средняя потеря энергии частицей на единицу длины пробега частицы в ткани).

Для учёта биологического эффекта поглощённой дозы была введена эквивалентная поглощённая доза ионизирующего излучения, численно равная произведению поглощённой дозы на коэффициент биологической эффективности. В системе СИ эффективная и эквивалентная поглощенная доза измеряется в зивертах (Зв, англ. sievert, Sv).

Ранее широко применялась единица измерения эквивалентной дозы бэр (Биологический Эквивалент Рентгена для гамма-излучения, англ. rem). Эквивалентная доза 1 бэр соответствует облучению гамма-квантами с поглощённой дозой 1 рентген. Эквивалентная поглощённая доза приводится к поглощённой дозе гамма-излучения, поскольку массовые измерительные приборы регистрируют в основном именно гамма-излучение, и такая величина наиболее соответствует возможностям измерений. Для рентгеновского и гамма-излучений 1 бэр = 0,01 Зв, соответственно принимают, что 1 рентген = 0,01 Зв.

Помимо биологической эффективности, необходимо учитывать проникающую способность излучений. Например, тяжёлые ядра атомов и альфа-частицы имеют крайне малую длину пробега в сколько-нибудь плотном веществе, поэтому радиоактивные альфа-источники опасны при попадании внутрь организма. Наоборот, гамма-излучение обладает значительной проникающей способностью.

Некоторые радиоактивные изотопы способны встраиваться в процесс обмена веществ живого организма, замещая неактивные элементы. Это приводит к удержанию и накоплению радиоактивного вещества непосредственно в живых тканях, что существенно увеличивает опасность контакта. Например, широко известны йод-131, изотопы стронция, плутония и т.п.. Для характеристики этого явления используется понятие период полувыведения изотопа из организма.

[править]

Механизмы биологического воздействия

См. также: Радиобиология и Порог дозы

Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки.

После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1-2 Зв на всё тело.

В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации).

Основным источником информации о стохастических эффектах воздействия ионизирующего излучения являются данные наблюдений за здоровьем людей, переживших атомные бомбардировки Хиросимы и Нагасаки. Японские специалисты в течение всех лет после атомной бомбардировки двух городов наблюдали тех 87 500 человек, которые пережили ее. Средняя доза их облучения составила 240 миллизиверт. При этом прирост онкологических заболеваний за последующие годы составил 9 %. При дозах менее 100 миллизиверт отличий между ожидаемой и наблюдаемой в реальности заболеваемостью никто в мире не установил.

[править]

Гигиеническое нормирование ионизирующих излучений

Нормирование осуществляется по санитарным правилам и нормативам СанПин 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)». Устанавливаются дозовые пределы эквивалентной дозы для следующих категорий лиц:

персонал - лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);

все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

Основные пределы доз и допустимые уровни облучения персонала группы Б равны четверти значений для персонала группы А.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для обычного населения за всю жизнь - 70 мЗв. Планируемое повышенное облучение допускается только для мужчин старше 30 лет при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья.

[править]

Применение ионизирующих излучений

Ионизирующие излучения применяются в различных отраслях:

Интроскопия.

Стерилизация медицинских инструментов, расходных материалов и продуктов питания.

В медицине (рентгенография, рентгеноскопия, лучевая терапия, некоторые виды томографии).

Источники света.

Датчики пожара (задымления).

Датчики и счетчики предметов.

[править]

В медицине

См. также: Ядерная медицина, Радиотерапия и Радиохирургия

Для лечения опухолей и других патологических очагов используют облучение гамма-квантами, рентгеном, электронами, тяжёлыми ядерными частицами, такими как протоны, тяжёлые ионы, отрицательные π-мезоны и нейтроны разных энергий. Используется также введение в организм радиофармацевтических препаратов, как с лечебными, так и с диагностическими целями.

[править]

Знак радиационной опасности

Новый знак радиационной опасности

Международный условный знак радиационной опасности («трилистник», «вентилятор») имеет форму трёх секторов шириной 60°, расставленных на 120° друг относительно друга, с небольшим кругом в центре. Выполняется чёрным цветом на жёлтом фоне.

В таблице символов Юникод есть символ знака радиационной опасности - ☢ (U+2622).

В 2007 году был принят новый знак радиационной опасности, в котором «трилистник» дополнен знаками «смертельно» («череп с костями») и «уходи!» (силуэт бегущего человечка и указывающая стрелка). Новый знак призван стать более понятным для тех, кто не знаком со значением традиционного «трилистника».

УРОК 19/ III-2 Отражение света. Законы отражения.

Отражение света. Законы отражения света.

Объяснение нового материала

Благодаря отражению света все живые организмы могут видеть окружающие предметы. Черные поверхности мы видим благодаря тому, что эти поверхности поглощают все лучи, падающие на эту поверхность, красные – отражают красные лучи, а остальные – поглощают.

Ученых давно интересовало, как происходит отражение света и законы отражения были открыты очень давно.

Проведем следующий опыт. (Демонстрируется отражение от плоского зеркала с помощью оптического диска). В результате учащиеся должны прийти к выводы, что падающий луч, отражаясь от зеркала, возвращается в туже среду. Это явление и называется отражением света.

Опытным путем устанавливаются законы отражения света.

Первый закон отражения света

Луч света направляют на поверхность зеркала так, чтобы луч лежал в плоскости зеркала. Закрывая четверть диска, где проходит световой луч, листом плотной бумаги устанавливают, что отраженный луч является видимым только тогда, когда бумага плотно прижата к диску и плоскость бумаги совпадает с плоскостью диска. В результате наблюдения учащиеся должны убедиться, что падающий и отраженный лучи лежат в одной плоскости с перпендикуляром к поверхности отражения, проведенным из точки падения луча.

Второй закон отражения света

Передвигая источник света по краю диска, изменяют направление падающего луча. При этом каждый раз изменяется направление отраженного луча. Необходимо обратить внимание, что углы падения и отражения при этом всегда остаются равными. Для установления связи между падающим и отраженным лучами, учащиеся чертят в тетради схему опыта и записывают определения падающего луча, отраженного и их равенство между собой.

Обратимость световых лучей

Из законов отражения света вытекает, что падающий и отраженные лучи обратимы. Если в результате с опытов с оптическим диском световой луч будет падать вдоль прямой, по которой распространялся падающий луч, то после отражения он будет распространяться вдоль прямой по которой проходил падающий луч.

Это свойство называется обратимостью световых лучей.

Построение изображения в плоском зеркале

Зеркало – очень привычная вещь в жизни каждого человека. Наиболее часто используется в жизни человека плоское зеркало.

Зеркало, поверхность которого является плоской, называют плоским зеркалом.

Если перед плоским зеркалом разместить предмет, например, свечу, то кажется, что за зеркалом размещен такой же предмет, который мы называем изображением в плоском зеркале.

Известно, что человек видит светящуюся точку, если лучи, выходящие из нее, непосредственно попадаю в глаз. Лучи света (при отражении от зеркала, см. рис.) не попадают непосредственно в глаз человека. Вместе с тем,

12-Д. Отражение света

Проделаем опыт. На зеркало, лежащее на столе, поставим полуоткрытую книгу. Сверху направим пучок света так, чтобы он отражался от зеркала, но на книгу не попадал. В темноте мы увидим падающий и отраженный пучки света. Накроем теперь зеркало бумагой. В этом случае мы будем видеть падающий пучок, а отраженного пучка не будет. Выходит, что свет от бумаги не отражается?

Приглядимся к рисункам внимательнее. Заметьте, когда свет падает на зеркало, текст книги практически нельзя прочесть из-за слабого освещения. Но когда свет падает на лист бумаги, текст книги становится видимым гораздо отчетливее, особенно в нижней своей части. Следовательно, книга освещается сильнее. Но что же ее освещает?

При падении света на разные поверхности возможны два варианта. Первый. Пучок света, падающий на поверхность, отражается ею также в виде пучка. Такое отражение света называется зеркальным отражением. Второй. Пучок света, падающий на поверхность, отражается ею во всех направлениях. Такое отражение света называют рассеянным отражением или просто рассеянием света.

Зеркальное отражение возникает на очень гладких (полированных) поверхностях. Если же поверхность шероховата, то она обязательно будет рассеивть свет. Именно это мы и наблюдали, когда накрывали зеркало листом бумаги. Она отражала свет, рассеивая его по всевозможным направлениям, в том числе и на книгу, освещая ее.

ражающей поверхности в точке излома луча (угол b).

При отражении света всегда выполняются две закономерности: Первая. Луч падающий, луч отраженный и перпендикуляр к отражающей поверхности в точке излома луча всегда лежат в одной плоскости. Вторая. Угол падения равен углу отражения. Эти два утверждения выражают суть закона отражения света.

На левом рисунке лучи и перпендикуляр к зеркалу не лежат в одной плоскости. На правом рисунке угол отражения не равен углу падения. Поэтому такое отражение лучей нельзя получить на опыте.

Закон отражения является справедливым как для случая зеркального, так и для случая рассеянного отражения света. Обратимся еще раз к чертежам на предыдущей странице. Несмотря на кажущуюся беспорядочность в отражении лучей на правом чертеже, все они расположены так, что углы отражения равны углам падения. Взгляните, шероховатую поверхность правого чертежа мы "разрезали" на отдельные элементы и провели перпендикуляры в точках излома лучей:

Решение качественных задач

    Угол между падающим лучом и зеркальной поверхностью составляет 50 0 . Чему равен угол падения, угол отражения, угол между падающим и отраженными лучами. Во сколько раз угол между падающим и отраженными лучами больше, чем угол падения? (Ответ: 40 0 , 40 0 , 80 0 , в два раза).

    Чему равен угол падения, если световой луч падает перпендикулярно к зеркальной поверхности? (Ответ: 0 0).

    Угол падения увеличился на 20 0 . На сколько увеличится угол между падающи и отраженными лучами? (Ответ: 40 0).

    Угал падения вдвое больше, чем угол между отраженным лучом и зеркальном поверхностью. Чему равен угол падения? (Ответ: 30 0).

ПРОВЕРЬ СЕБЯ - Закрепление нового материала

    Сформулируйте закон отражения света.

    В чем заключается закон явления отражения света?

    Какой угол называется углом падения; отражения?

    Какое свойство падающего и отраженного луча называют обратимым?

    Почему иногда днем окна домов нам кажутся темными, а иногда – светлыми?

    Какими темными или светлыми мы видим дорогу и лужи на ней, если ночью при отсутствии внешнего освещения включить фары автомобиля?

ОТРАЖЕНИЕ СВЕТА. (записать в тетрадь)

1.Что происходит при падении световых лучей при попадании на границу раздела двух сред?

Попадая на границу раздела двух сред свет частично возвращается в первую среду (т.е. отражается) и частично проникает во вторую среду, меняя при этом направление своего распространения (т.е. преломляется).

2.Что называют отражением?

Явление, при котором свет, попадая на границу раздела двух сред, возвращается в первую среду, называется отражением.

  -это угол падения, т.е. угол между падающим лучом и перпендикуляром, восстановленным в точке падения луча.

 -это угол отражения, т.е. угол между перпендикуляром, восстановленным в точке падения луча и отраженным лучом.

Графическое изображение явления

отражения:

перпендикуляр

падающий отраженный

луч   луч

граница раздела двух сред

3.Законы отражения.

1.Падающий и отраженный лучи лежат в

одной плоскости с перпендикуляром, проведенным в точку падения луча.

Этот закон позволяет строить изображения

при помощи световых лучей в плоскости листа.

2.Угол падения луча равен углу

отражения . Этот закон указывает на то, что

световые лучи обратимы.

4.Виды отражения.

1.зеркальное - т.е. отражение от поверхности, размеры шероховатостей которой меньше длины световой волны. Если свет отражается от зеркальной поверхности, то лучи, падающие параллельно, остаются параллельными и при отражении.

Зеркальных поверхностей очень много – тихая водная гладь озера, стекло, полированная мебель и т. п. Самые известные и широко применяемые зеркальные поверхности – это зеркала.

2. диффузное (рассеянное) отражение, т.е.

отражение от поверхности, размеры

шероховатостей у которой сравнимы с длиной волны источника света. Если свет отражается от шероховатой поверхности, то лучи, падающие параллельно, при отражении уже

не будут параллельными.

Диффузное отражение заставляет каждый участок поверхности действовать подобно точечному излучателю, мы можем видеть освещаемые тела под любыми углами. Кроме этого, отраженный свет даёт нам информацию о поверхности тела. нам информацию о поверхности тела.

5.Построение изображения светящейся точки в плоском зеркале .

Плоское зеркало – это плоская отражающая поверхность . Для построения изображения светящейся точки в плоском зеркале из множества лучей, исходящих от неё, обычно выделяют только два.

1)Это луч, перпендикулярный зеркалу (он отразится в обратном направлении), и

2) луч, падающий под углом (он отразится под таким же углом).

Продолжения отраженных лучей (изображенных пунктиром) пересекаются в точке S | , которая является изображением светящейся точки S.

Поэтому для нахождения изображения источника света S достаточно опустить на зеркало или на его продолжение из точки, где находится источник света, перпендикуляр и продолжить его на расстояние OS = OS 1 за зеркало.

6.Построение изображения предмета в плоском зеркале

Для построения изображения предметы в плоском зеркале применяют те же приёмы, только строят изображения крайних точек предмета(см рис).

Нужно помнить, что плоское зеркало даёт мнимое, прямое и равное по размеру изображение, которое расположено на таком же расстоянии от зеркала, что и предмет, т. е. изображение симметрично самому предмету.

Примечание: Если два плоских зеркала расположены под углом друг к другу, то количество

изображений предметов (обозначим их N) зависит от угла между ними. Количество

изображений находят по формуле:

N = , где φ - угол между зеркалами.

7.Типичная задача на построение и анализ изображения предмета в плоском зеркале.

Перечерти рисунок и ответь на следующие вопросы:

1. На каком расстоянии расположен

глаз? Масштаб: в 1 клеточке – 10 см.

2.Построй изображение предмета

(стрелки) в плоском зеркале.

3.Покажи зону видения в этом зеркале.

4.Какова видимая часть изображения? Для этого проведи луч через глаз наблюдателя и край зеркала. Зарисуй красным цветом видимую часть.

5. Где нужно расположить глаз наблюдателя, чтобы изображение стрелки было видно полностью?

ДОМАШНЕЕ ЗАДАНИЕ

ОТРАЖЕНИЕ СВЕТА

(выполнить задания:

с 1 по 16 записать только ответ,

В предыдущих параграфах мы изучили явление отражения света. Познакомимся теперь со вторым явлением, при котором лучи меняют направление своего распространения. Это явление – преломление света на границе раздела двух сред. Взгляните на чертежи с лучами и аквариумом в § 14-б. Луч, выходящий из лазера, был прямолинейным, но, дойдя до стеклянной стенки аквариума, луч изменил направление – преломился.

Преломлением света называют изменение направления луча на границе раздела двух сред, при котором свет переходит во вторую среду (сравните с отражением). Например, на рисунке мы изобразили примеры преломления светового луча на границах воздуха и воды, воздуха и стекла, воды и стекла.

Из сравнения левых чертежей следует, что пара сред «воздух-стекло» преломляет свет сильнее, чем пара сред «воздух-вода». Из сравнения правых чертежей видно, что при переходе из воздуха в стекло свет преломляется сильнее, чем при переходе из воды в стекло. То есть, пары сред, прозрачные для оптических излучений, обладают различной преломляющей способностью, характеризующейся относительным показателем преломления. Он вычисляется по формуле, указанной на следующей странице, поэтому может быть измерен экспериментально. Если в качестве первой среды выбран вакуум, то получаются значения:

Вакуум 1 Вода 1,33
Воздух 1,0003 Глицерин 1,47
Лёд 1,31 Стекло 1,5 – 2,0

Эти значения измерены при 20 °С для жёлтого света. При другой температуре или другом цвете света показатели будут иными (см. § 14-з). При качественном рассмотрении таблицы отметим: чем больше показатель преломления отличается от единицы, тем больше угол, на который отклоняется луч, переходя из вакуума в среду. Поскольку показатель преломления воздуха почти не отличается от единицы, влияние воздуха на распространение света практически незаметно.

  1. К данному моменту, знакомясь с оптикой, ...
  2. Что общего у явлений отражения и преломления света?
  3. Каково полное название изучаемого нами явления?
  4. Схематичные рисунки с лучами и аквариумом в § 14-б позволяют сделать наблюдение:
  5. О преломлении можно говорить, только если...
  6. В левой части рисунка проиллюстрировано явление...
  7. На среднем рисунке преломлённый луч отклоняется сильнее, чем на левом. Какой мы делаем вывод?
  8. На правом рисунке преломлённый луч отклоняется меньше, чем на среднем. Чем это обусловлено?
  9. Проводя опыты или сравнивая чертежи, мы приходим к обобщению: ...
  10. Для характеристики преломляющей способности пары сред пользуются...
  11. Показатель преломления может быть измерен только косвенно, так как...
  12. Какой вывод мы делаем, сравнивая табличные значения показателей преломления?
  13. Мы утверждаем, что воздух почти не оказывает влияния на преломление света, ...

1.8. ПРИНЦИП ОБРАТИМОСТИ ХОДА ЛУЧЕЙ СВЕТА (ЗАКОН ВЗАИМНОСТИ)

Этот принцип - одно из важных положений геометрической оптики. При преломлении на границе двух сред лучи остаются взаимными, т.е. при изменении направления световых лучей на обратное их взаимное расположение не меняется. Аналогичное положение справедливо и при отражении света. Принцип обратимости хода световых лучей выполняется при любом числе отражений или преломлений, так как он соблюдается при каждом из них.

Законы геометрической оптики имеют большое значение. Во-первых, они устанавливают, что лучи при прохождении через оптическую систему всегда лежат в плоскости падения (образованной падающим лучом и нормалью). Во-вторых, они устанавливают численные зависимости координат лучей при переходе от одной поверхности к другой, т.е. позволяют рассчитать ход луча через сложную оптическую систему. В-третьих, они указывают на возможность анализа оптических систем в обратном ходе лучей.

Геометрическая оптика является теоретическим фундаментом оптических приборов. Технологические основы сборки и юстировки оптических приборов в основном базируются на положениях геометрической оптики. Законы геометрической оптики используются при измерении постоянных оптических систем и деталей, при исследовании оптических свойств приборов и изучении их погрешностей.

Природа вооружила человека прекрасным оптическим инструментом - глазом, но его возможности ограничены. Оптические приборы, созданные человеком, существенно расширили возможности зрения. Например, невооруженный глаз различает предметы величиной порядка 0,1 мм; применение лупы повысило эту возможность до 0,01 мм, а с помощью микроскопа стало возможным различать объекты величиной до 0,15 мкм и т. д.

Оптические приборы в настоящее время получили настолько широкое распространение и развитие, что появилась необходимость выделить отдельные группы приборов, объединенных общими оптическими свойствами и специализированных на решении однородных задач.

Можно выделить пять главных видов оптических приборов:

  • телескопические системы (зрительные трубы);
  • микроскопы;
  • фотографические оптические системы;
  • проекционные приборы;
  • осветительные устройства.

Классификация оптических приборов может быть первоначально основана на двух классах - изображающие и неизображающие. Первые можно делить по значению увеличения, вторые - по энергетике и принципу формирования освещенной площадки. Отметим, что в современных оптических приборах одновременно могут сочетаться признаки двух и более видов приборов. Например, металлографический микроскоп может служить как обычный микроскоп, так же как и фотографический прибор и т.д. Кроме того, есть зеркальные, линзовые и зеркально-линзовые системы. Зеркально-линзовые системы содержат зеркальные и линзовые оптические элементы. Они реализованы в прожекторах, фарах, телескопах, микроскопах, телеобъективах. Линзовые содержат только линзы сферической или асферической формы. Примеры их использования конденсоры - осветительные системы. Оптические телескопы (рефлекторы), которые в качестве светособирающего элемента используют вогнутые зеркала как сферической, так и асферической формы относятся к зеркальным приборам. В качестве элементов оптических систем могут использоваться растровые системы, оптические детали со ступенчатой поверхностью сложного профиля (например, линзы Френеля), световоды и оптическое волокно.