История открытие элементарных частиц. Элементарные частицы. Существование элементарных частиц ученые обнаружили при исследовании ядерных процессов, поэтому вплоть до середины XX века физика элементарных частиц была Что является главным инструментом исслед

Сумский государственный университет

по физике

История открытия элементарных частиц

Преподаватель

Нефедченко В.Ф.

От электрона до нейтрино. 5

Электрон. 5

Нейтрон. 8

Позитрон. 10

Пионы и Мюоны. Открытие мезона. 12

Нейтрино. 17

От странности до очарования. 19

Открытие странных частиц. 19

Резонансы. 21

«Очарованные» частицы. 22

Заключение. 23

Литература. 26

Введение.

В середине и второй половине ХХ века в тех разделах физики, которые заняты изучением фундаментальной структуры материи, были получены поистине удивительные результаты. Прежде всего, это проявилось в открытии целого множества новых субатомных частиц. Их обычно называют элементарными частицами, но далеко не все из них действительно элементарны. Многие из них в свою очередь состоят из еще более элементарных частичек.

Открытие элементарных частиц явилось закономерным результатом общих успехов в изучении строения вещества, достигнутых физикой в конце 19 в. Оно было подготовлено всесторонними исследованиями оптических спектров атомов, изучением электрических явлений в жидкостях и газах, открытием фотоэлектричества, рентгеновских лучей, естественной радиоактивности, свидетельствовавших о существовании сложной структуры материи.

Мир субатомных частиц поистине многообразен. К ним относятся протоны и нейтроны, составляющие атомные ядра, а также обращающиеся вокруг ядер электроны. Но есть и такие частицы, которые в окружающем нас веществе практически не встречаются. Время их жизни чрезвычайно мало, оно составляет мельчайшие доли секунды. По истечении этого чрезвычайно короткого времени они распадаются на обычные частицы. Таких нестабильных короткоживущих частиц поразительно много: их известно уже несколько сотен.

В 60-70-е годы физики были совершенно сбиты с толку многочисленностью, разнообразием и необычностью вновь открытых субатомных частиц. Казалось, им не будет конца. Совершенно непонятно, для чего столько частиц. Являются ли эти элементарные частицы хаотическими и случайными осколками материи? Или, возможно, они таят в себе ключ к познанию структуры Вселенной? Развитие физики в последующие десятилетия показало, что в существовании такой структуры нет никаких сомнений. В конце ХХ в. физика начинает понимать, каково значение каждой из элементарных частиц.

Миру субатомных частиц присущ глубокий и рациональный порядок. В основе этого порядка - фундаментальные физические взаимодействия.

Элементарные частицы в точном значении этого термина - первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии “Элементарные частицы” в современной физике находит выражение идея о первообразных сущностях, определяющих все известные свойства материального мира, идея, зародившаяся на ранних этапах становления естествознания и всегда игравшая важную роль в его развитии.

Понятие “Элементарные частицы” сформировалось в тесной связи с установлением дискретного характера строения вещества на микроскопическом уровне. Обнаружение на рубеже 19-20 вв. мельчайших носителей свойств вещества - молекул и атомов - и установление того факта, что молекулы построены из атомов, впервые позволило описать все известные вещества как комбинации конечного, хотя и большого, числа структурных составляющих - атомов. Выявление в дальнейшем наличия составных слагающих атомов - электронов и ядер, установление сложной природы ядер, оказавшихся построенными всего из двух типов частиц (протонов и нейтронов), существенно уменьшило количество дискретных элементов, формирующих свойства вещества, и дало основание предполагать, что цепочка составных частей материи завершается дискретными бесструктурными образованиями - элементарными частицами. Такое предположение, вообще говоря, является экстраполяцией известных фактов и сколько-нибудь строго обосновано быть не может. Нельзя с уверенностью утверждать, что частицы, элементарные в смысле приведённого определения, существуют. Протоны и нейтроны, например, длительное время считавшиеся элементарными частицами, как выяснилось, имеют сложное строение. Не исключена возможность того, что последовательность структурных составляющих материи принципиально бесконечна. Может оказаться также, что утверждение “состоит из...” на какой-то ступени изучения материи окажется лишённым содержания. От данного выше определения “элементарности” в этом случае придется отказаться. Существование элементарных частиц - это своего рода постулат, и проверка его справедливости - одна из важнейших задач физики.

От электрона до нейтрино

Исторически первой открытой элементарной частицей был электрон - носитель отрицательного элементарного электрического заряда в атомах.

Это самая «старая» элементарная частица. В идейном плане он вошел в физику в 1881 г., когда Гельмгольц в речи в честь Фарадея указал, что атомная структура вещества вместе с законами электролиза Фарадея неизбежно приводит к мысли, что электрический заряд всегда должен быть кратен некоторому элементарному заряду, - т. е. к выводу о квантовании электрического заряда. Носителем отрицательного элементарного заряда, как мы теперь знаем, и является электрон.

Максвелл же, создавший фундаментальную теорию электрических и магнитных явлений и использовавший существенным образом экспериментальные результаты Фарадея, не принимал гипотезы атомного электричества.

Между тем «временная» теория о существовании электрона была подтверждена в 1897 г. в экспериментах Дж. Дж. Томсона, в которых он отождествил так называемые катодные лучи с электронами и измерил заряд и массу электрона. Частицы катодных лучей Томсон называл «корпускулами» или изначальными атомами. Слово «электрон» первоначально использовалось для обозначения величины заряда «корпускулы». И только со временем электроном стали называть саму частицу.

Однако идея об электроне не сразу получила признание. Когда на лекции в Королевском обществе Дж. Дж. Томсон – первооткрыватель электрона – высказал предположение, что частицы катодных лучей следует рассматривать как возможные компоненты атома, некоторые его коллеги искренне считали, что он мистифицирует их. Сам Планк признавался в 1925 г., что не верил тогда, в 1900г., до конца в гипотезу об электроне.

Можно сказать, что после опытов Милликена, измерившего в 1911г. заряды индивидуальных электронов, эта первая элементарная частица получила право на существование.

Прямое экспериментальное доказательство существования фотона было дано Р. Милликеном в 1912-1915 гг. в его исследованиях фотоэффекта, а также А. Комптоном в 1922 г., обнаружившим рассеяние рентгеновских лучей с изменением их частоты.

Фотон – в некотором смысле особая частица. Дело в том, что масса его покоя в отличие от других частиц (кроме нейтрино) равна нулю. Поэтому его стали считать частицей не сразу: вначале полагали, что наличие конечной и отличной от нуля массы покоя – обязательная черта элементарной частицы.

Фотон – это «оживленный» планковский квант света, т. е. квант света, несущий импульс.

Кванты света ввел Планк в 1901 г. для того, чтобы объяснить законы излучения абсолютно черного тела. Но он был не частицами, а только минимально возможными «порциями» энергии света той или иной частоты.

Хотя предположение Планка о квантовании энергии света абсолютно противоречило всей классической теории, сам Планк понял это не сразу. Ученый писал, что он «… пытался как-то ввести величину h в рамки классической теории. Однако вопреки всем таким попыткам эта величина оказалась весьма строптивой». Впоследствии эта величина получила название постоянной Планка (h=6*10 -27 эрг.с).

После введения постоянной Планка ситуация не стала более ясной.

«Живыми» фотоны или кванты сделала теория относительности Эйнштейна, который в 1905 г. показал, что кванты должны иметь не только энергию, но и импульс, и что они являются в полном смысле частицами, только особенными, так как масса покоя их равна нулю, и двигаются они со скоростью света.

Итак вывод о существовании частицы электромагнитного поля - фотона - берёт своё начало с работы М. Планка (1900). Предположив, что энергия электромагнитного излучения абсолютно чёрного тела квантована, Планк получил правильную формулу для спектра излучения. Развивая идею Планка, А. Эйнштейн (1905) постулировал, что электромагнитное излучение (свет) в действительности является потоком отдельных квантов (фотонов), и на этой основе объяснил закономерности фотоэффекта.

Протон был открыт Э. Резерфордом в 1919 г. в исследованиях взаимодействия альфа-частиц с атомными ядрами.

Точнее открытие протона связано с открытием атомного ядра. Оно было сделано Резерфордом в результате бомбардировки атомов азота высоко энергетическими α-частицами. Резерфорд заключил, что «ядро атома азота распадается вследствие громадных сил, развивающихся при столкновении с быстрой α-частицей, и что освобождающийся водородный атом образует составную часть ядра азота». В 1920 г. ядра атома водорода были названы Резерфордом протонами (протон по-гречески означает простейший, первичный). Были и другие предложения по поводу названия. Так, например, предлагалось название «барон» (барос по-гречески означает тяжесть). Однако оно подчеркивало только одну особенность ядра водорода – его массу. Термин «протон» был существенно глубже и содержательнее, отражая фундаментальность протона, ибо протон – это простейшее ядро – ядро самого легкого изотопа водорода. Это, несомненно, один из наиболее удачных терминов в физике элементарных частиц. Таким образом, протоны - это частицы с единичным положительным зарядом и массой, в 1840 раз превышающей массу электрона.

ПЛАН

Введение

1. Открытие элементарных частиц

2. Теории элементарных частиц

2.1. Квантовая электродинамика (КЭД)

2.2. Теория кварков

2.3. Теория электрослабого взаимодействия

2.4. Квантовая хромодинамика

Заключение

Литература

Введение.

В середине и второй половине ХХ века в тех разделах физики, которые заняты изучением фундаментальной структуры материи, были получены поистине удивительные результаты. Прежде всего это проявилось в открытии целого множества новых субатомных частиц. Их обычно называют элементарными частицами, но далеко не все из них действительно элементарны. Многие из них в свою очередь состоят из еще более элементарных частичек.

Мир субатомных частиц поистине многообразен. К ним относятся протоны и нейтроны, составляющие атомные ядра, а также обращающиеся вокруг ядер электроны. Но есть и такие частицы, которые в окружающем нас веществе практически не встречаются. Время их жизни чрезвычайно мало, оно составляет мельчайшие доли секунды. По истечении этого чрезвычайно короткого времени они распадаются на обычные частицы. Таких нестабильных короткоживущих частиц поразительно много: их известно уже несколько сотен.

В 60-70-е годы физики были совершенно сбиты с толку многочисленностью, разнообразием и необычностью вновь открытых субатомных частиц. Казалось, им не будет конца. Совершенно непонятно, для чего столько частиц. Являются ли эти элементарные частицы хаотическими и случайными осколками материи? Или, возможно, они таят в себе ключ к познанию структуры Вселенной? Развитие физики в последующие десятилетия показало, что в существовании такой структуры нет никаких сомнений. В конце ХХ в. физика начинает понимать, каково значение каждой из элементарных частиц.

Миру субатомных частиц присущ глубокий и рациональный порядок. В основе этого порядка - фундаментальные физические взаимодействия.

1. Открытие элементарных частиц.

Открытие элементарных часиц явилось закономерным результатом общих успехов в изучении строения вещества, достигнутых физикой в конце 19 в. Оно было подготовлено всесторонними исследованиями оптических спектров атомов, изучением электрических явлений в жидкостях и газах, открытием фотоэлектричества, рентгеновских лучей, естественной радиоактивности, свидетельствовавших о существовании сложной структуры материи.

Исторически первой открытой элементарной частицей был электрон - носитель отрицательного элементарного электрического заряда в атомах. В 1897 Дж. Дж. Томсон установил, что т. н. катодные лучи образованы потоком мельчайших частиц, которые были названы электронами. В 1911 Э. Резерфорд, пропуская альфа-частицы от естественного радиоактивного источника через тонкие фольги различных веществ, выяснил, что положительный заряд в атомах сосредоточен в компактных образованиях - ядрах, а в 1919 обнаружил среди частиц, выбитых из атомных ядер, протоны - частицы с единичным положительным зарядом и массой, в 1840 раз превышающей массу электрона. Другая частица, входящая в состав ядра, - нейтрон - была открыта в 1932 Дж. Чедвиком при исследованиях взаимодействия a-частиц с бериллием. Нейтрон имеет массу, близкую к массе протона, но не обладает электрическим зарядом. Открытием нейтрона завершилось выявление частиц - структурных элементов атомов и их ядер.

Вывод о существовании частицы электромагнитного поля - фотона - берёт своё начало с работы М. Планка (1900). Предположив, что энергия электромагнитного излучения абсолютно чёрного тела квантованна, Планк получил правильную формулу для спектра излучения. Развивая идею Планка, А. Эйнштейн (1905) постулировал, что электромагнитное излучение (свет) в действительности является потоком отдельных квантов (фотонов), и на этой основе объяснил закономерности фотоэффекта. Прямые экспериментальные доказательства существования фотона были даны Р. Милликеном (1912- 1915) и А. Комптоном (1922).

Открытие нейтрино - частицы, почти не взаимодействующей с веществом, ведёт своё начало от теоретической догадки В. Паули (1930), позволившей за счёт предположения о рождении такой частицы устранить трудности с законом сохранения энергии в процессах бета-распада радиоактивных ядер. Экспериментально существование нейтрино было подтверждено лишь в 1953 (Ф. Райнес и К Коуэн, США).

С 30-х и до начала 50-х гг. изучение элементарных частиц было тесно связано с исследованием космических лучей. В 1932 в составе космических лучей К. Андерсоном был обнаружен позитрон (е+) - частица с массой электрона, но с положительным электрическим зарядом. Позитрон был первой открытой античастицей. Существование е+ непосредственно вытекало из релятивистской теории электрона, развитой П. Дираком (1928-31) незадолго до обнаружения позитрона. В 1936 американские физики К. Андерсон и С. Неддермейер обнаружили при исследовании осмических лучей мюоны (обоих знаков электрического заряда) - частицы с массой примерно в 200 масс электрона, а в остальном удивительно близкие по свойствам к е-, е+.

В 1947 также в космических лучах группой С. Пауэлла были открыты p+ и p--мезоны с массой в 274 электронные массы, играющие важную роль во взаимодействии протонов с нейтронами в ядрах. Существование подобных частиц было предположено Х. Юкавой в 1935.

Конец 40-х - начало 50-х гг. ознаменовались открытием большой группы частиц с необычными свойствами, получивших название “странных”. Первые частицы этой группы К+- и К--мезоны, L-, S+ -, S- -, X- -гипероны были открыты в космических лучах, последующие открытия странных частиц были сделаны на ускорителях - установках, создающих интенсивные потоки быстрых протонов и электронов. При столкновении с веществом ускоренные протоны и электроны рождают новые элементарные частицы, которые и становятся предметом изучения.

С начала 50-х гг. ускорители превратились в основной инструмент для исследования элементарных частиц. В 70-х гг. энергии частиц, разогнанных на ускорителях, составили десятки и сотни млрд. электронвольт (Гэв). Стремление к увеличению энергий частиц обусловлено тем, что высокие энергии открывают возможность изучения строения материи на тем меньших расстояниях, чем выше энергия сталкивающихся частиц. Ускорители существенно увеличили темп получения новых данных и в короткий срок расширили и обогатили наше знание свойств микромира. Применение ускорителей для изучения странных частиц позволило более детально изучить их свойства, в частности особенности их распада, и вскоре привело к важному открытию: выяснению возможности изменения характеристик некоторых микропроцессов при операции зеркального отражения - т. н. нарушению пространств, чётности (1956). Ввод в строй протонных ускорителей с энергиями в миллиарды электронвольт позволил открыть тяжёлые античастицы: антипротон (1955), антинейтрон (1956), антисигма-гипероны (1960). В 1964 был открыт самый тяжёлый гиперон W- (с массой около двух масс протона). В 1960-х гг. на ускорителях было открыто большое число крайне неустойчивых (по сравнению с др. нестабильными элементарными частицами) частиц, получивших название “резонансов”. Массы большинства резонансов превышают массу протона. Первый из них D1 (1232) был известен с 1953. Оказалось, что резонансы составляют основная часть элементарных частиц.

В 1962 было выяснено, что существуют два разных нейтрино: электронное и мюонное. В 1964 в распадах нейтральных К-мезонов было обнаружено несохранение т. н. комбинированной чётности (введённой Ли Цзун-дао и Ян Чжэнь-нином и независимо Л. Д. Ландау в 1956), означающее необходимость пересмотра привычных взглядов на поведение физических процессов при операции отражения времени.

В 1974 были обнаружены массивные (в 3-4 протонные массы) и в то же время относительно устойчивые y-частицы, с временем жизни, необычно большим для резонансов. Они оказались тесно связанными с новым семейством элементарных частиц - “очарованных”, первые представители которого (D0, D+, Lс) были открыты в 1976. В 1975 были получены первые сведения о существовании тяжёлого аналога электрона и мюона (тяжёлого лептона t). В 1977 были открыты Ў-частицы с массой порядка десятка протонных масс.

Таким образом, за годы, прошедшие после открытия электрона, было выявлено огромное число разнообразных микрочастиц материи. Мир элементарных частиц оказался достаточно сложно устроенным. Неожиданными во многих отношениях оказались свойства обнаруженных элементарных частиц. Для их описания, помимо характеристик, заимствованных из классической физики, таких, как электрический заряд, масса, момент количества движения, потребовалось ввести много новых специальных характеристик, в частности для описания странных элементарных частиц - странность (К. Нишиджима, М. Гелл-Ман, 1953), “очарованных” элементарных частиц - “очарование” (американские физики Дж. Бьёркен, Ш. Глэшоу, 1964); уже названия приведённых характеристик отражают необычность описываемых ими свойств элементарных частиц.

Изучение внутреннего строения материи и свойств элементарных частиц с первых своих шагов сопровождалось радикальным пересмотром многих устоявшихся понятий и представлений. Закономерности, управляющие поведением материи в малом, оказались настолько отличными от закономерностей классической механики и электродинамики, что потребовали для своего описания совершенно новых теоретических построений.

2. Теории элементарных частиц

2.1. Квантовая электродинамика (КЭД)

Квантовая механика позволяет описывать движение элементарных частиц, но не их порождение или уничтожение, т. е. применяется лишь для описания систем с неизменным числом частиц. Обобщением квантовой механики является квантовая теория поля - это квантовая теория систем с бесконечным числом степеней свободы (физических полей). Потребность в такой теории порождается квантово-волновым дуализмом, существованием волновых свойств у всех частиц. В квантовой теории поля взаимодействие представляют как результат обмена квантами поля.

В середине ХХ в. была создана теория электромагнитного взаимодействия - квантовая электродинамика КЭД - это продуманная до мельчайших деталей и оснащенная совершенным математическим аппаратом теория взаимодействия фотонов и электронов. В основе КЭД - описание электромагнитного взаимодействия с использованием понятия виртуальных фотонов - его переносчиков. Эта теория удовлетворяет основным принципам как квантовой теории, так и теории относительности.

В центре теории анализ актов испускания или поглощения одного фотона одной заряженной частицей, а также аннигиляции электронно-позитронной пары в фотон или порождение фотонами такой пары.

Если в классическом описании электроны представляются в виде твердого точечного шарика, то в КЭД окружающее электрона электромагнитное поле рассматривается как облако виртуальных фотонов, которое неотступно следует за электроном, окружая его квантами энергии. После того, как электрон испускает фотон, тот порождает (виртуальную) электрон-позитронную пору, которая может аннигилировать с образованием нового фотона. Последний может поглотиться исходным фотоном, но может породить новую пару и т.д. Таким образом электрон покрывается облаком виртуальных фотонов, электронов и позитронов, находящихся в состоянии динамического равновесия. Фотоны возникают и исчезают очень быстро, а электроны движутся в пространстве не по вполне определенным траекториям. Еще можно тем или иным способом определить начальную и конечную точки пути - до и после рассеяния, но сам путь в промежутке между началом и концом движения остается неопределенным.

Описание взаимодействия с помощью частицы-переносчика привело к расширению понятия фотона. Вводятся понятия реального (кванта видимого нами света) и виртуального (скоротечного, призрачного) фотона, который "видят" только заряженные частицы, претерпевающие рассеяние.

Чтобы проверить, согласуется ли теория с реальностью, физики сосредоточили внимание на двух эффектах, представлявших особый интерес. Первый касался энергетических уровней атома водорода - простейшего атома. Согласно КЭД, уровни должны быть слегка смещены относительно положения, которое они занимали бы в отсутствие виртуальных фотонов. Вторая решающая проверка КЭД касалась чрезвычайно малой поправки к собственному магнитному моменту электрона. Теоретические и экспериментальные результаты проверки КЭД совпадают с высочайшей точностью - более девяти знаков после запятой. Столь поразительное соответствие дает право считать КЭД наиболее совершенной из существующих естественно-научных теорий.

После подобного триумфа КЭД была принята как модель для квантового описания трех других фундаментальных взаимодействий. Разумеется, полям, связанным с другими взаимодействиями, должны соответствовать иные частицы-переносчики.

2.2. Теория кварков

Теория кварков - это теория строения адронов. Основная идея этой теории очень проста. Все адроны построены из более мелких частиц, называемых кварками. Значит, кварки - это более элементарные частицы, чем адроны. Кварки несут дробный электрический заряд: они обладают зарядом, величина которого составляет либо -1 / 3 или +2 / 3 фундаментальной единицы - заряда электрона. Комбинация из двух и трех кварков может иметь суммарный заряд, равный нулю или единице. Все кварки имеют спин Ѕ ,поэтому они относятся к фермионам. Основоположники теории кварков Гелл-Манн и Цвейг, чтобы учесть все известные в 60-е гг. адроны ввели три сорта (аромата) кварков: u (от up- верхний), d (от down- нижний) и s (от strange - странный).

Кварки могут соединяться друг с другом одним из двух возможных способов: либо тройками, либо парами кварк - антикварк. Из трех кварков состоят сравнительно тяжелые частицы - барионы, что означает "тяжелые частицы". Наиболее известны из барионов нейтрон и протон. Более легкие пары кварк - антикварк образуют частицы, получившие название мезоны - "промежуточные частицы". Например, протон состоит из двух u- и одного d-кварков (uud), а нейтрон - из двух d-кварков и одного u-кварка (udd).Чтобы это "трио" кварков не распадалось, необходима удерживающая их сила, некий "клей".

Оказалось, что результирующее взаимодействие между нейтронами и протонами в ядре представляет собой просто остаточный эффект более мощного взаимодействия между самими кварками. Это объяснило, почему сильное взаимодействие кажется столь сложным. Когда протон "прилипает" к нейтрону или другому протону, во взаимодействии участвуют шесть кварков, каждый из которых взаимодействует со всеми остальными. Значительная часть сил тратится на прочное склеивание трио кварков, а небольшая - на скрепление двух трио кварков друг с другом. (Но выяснилось, что кварки участвуют и в слабом взаимодействии. Слабое взаимодействие может изменять аромат кварка. Именно так происходит распад нейтрона. Один из d-кварков в нейтроне превращается в u-кварк, а избыток заряда уносит рождающийся одновременно электрон. Аналогичным образом, изменяя аромат, слабое взаимодействие приводит к распаду и других адронов.)

То обстоятельство, что из различных комбинаций трех основных частиц можно получить все известные адроны, стало триумфом теории кварков. Но в 70-е гг. были открыты новые адроны (пси-частицы, ипсилон-мезон и др.). Этим был нанесен удар первому варианту теории кварков, поскольку в ней уже не было места ни для одной новой частицы. Все возможные комбинации из кварков и их антикварков были уже исчерпаны.

Проблему удалось решить за счет введения трех новых ароматов. Они получили название - charm (очарование), или с; b -кварк (от bottom - дно, а чаще beauty - красота, или прелесть); впоследствии был введен еще один аромат - t (от top - верхний).

Кварки скрепляются между собой сильным взаимодействием. Переносчики сильного взаимодействия - глюоны (цветовые заряды). Область физики элементарных частиц, изучающая взаимодействие кварков и глюонов, носит название квантовой хромодинамики. Как квантовая электродинамика - теория электромагнитного взаимодействия, так квантовая хромодинамика - теория сильного взаимодействия.

Хотя и существует некоторая неудовлетворенность кварковой схемой, большинство физиков считает кварки подлинно элементарными частицами - точечными, неделимыми и не обладающими внутренней структурой. В этом отношении они напоминают лептоны, и уже давно предполагается, что между этими двумя различными, но сходными по своей структуре семействами должна существовать глубокая взаимосвязь.

Таким образом, наиболее вероятное число истинно элементарных частиц (не считая переносчиков фундаментальных взаимодействий) на конец ХХ века равно 48. Из них: лептонов (6х2) = 12 плюс кварков (6х3)х2 =36.

2.3. Теория электрослабого взаимодействия

В 70-е ХХ века в естествознании произошло выдающееся событие: два взаимодействия из четырех физики объединили в одно. Картина фундаментальных оснований природы несколько упростилась. Электромагнитное и слабое взаимодействия, казалось бы весьма разные по своей природе, в действительности оказались двумя разновидностями единого т.н. электрослабого взаимодействия. Теория электрослабого взаимодействия решающим образом повлияла на дальнейшее развитие физики элементарных частиц в конце ХХ в.

Главная идея в построении этой теории состояла в описании слабого взаимодействия на языке концепции калибровочного поля, в соответствии с которой ключом к пониманию природы взаимодействий служит симметрия. Одна из фундаментальных идей в физике второй половины ХХ в. - это убеждение, что все взаимодействия существуют лишь для того, чтобы поддерживать в природе некий набор абстрактных симметрий. Какое отношение имеет симметрия к фундаментальным взаимодействиям? На первый взгляд, само предположение о существовании подобной связи кажется парадоксальным и непонятным.

Прежде всего о том, что понимается под симметрией. Принято считать, что предмет обладает симметрией, если предмет остается неизменным в результате проведения той или иной операции по его преобразованию. Так, сфера симметрична, потому что выглядит одинаково при повороте на любой угол относительно ее центра. Законы электричества симметричны относительно замены положительных зарядов отрицательными и наоборот. Таким образом, под симметрией мы понимаем инвариантность относительно некой операции.

Существуют разные типы симметрий: геометрические, зеркальные, негеометрические. Среди негеометрических есть так называемые калибровочные симметрии . Калибровочные симметрии носят абстрактный характер и непосредственно не фиксируются. Они связаны с изменением отсчета уровня, масштаба или значения некоторой физической величины. Система обладает калибровочной симметрией, если ее природа остается неизменной при такого рода преобразовании. Так, например, в физике работа зависит от разности высот, а не от абсолютной высоты; напряжение - от разности потенциалов, а не от их абсолютных величин и др. Симметрии, на которых основан пересмотр понимания четырех фундаментальных взаимодействий, именно такого рода. Калибровочные преобразования могут быть глобальными и локальными. Калибровочные преобразования, изменяющиеся от точки к точке, известны под названием "локальных" калибровочных преобразований. В природе существует целый ряд локальных калибровочных симметрий и необходимо соответствующее число полей для компенсации этих калибровочных преобразований. Силовые поля можно рассматривать как средство, с помощью которого в природе создаются присущие ей локальные калибровочные симметрии. Значение концепции калибровочной симметрии заключается в том, что благодаря ей теоретически моделируются все четыре фундаментальных взаимодействия, встречающиеся в природе. Все их можно рассматривать как калибровочные поля.

Представляя слабое взаимодействие в виде калибровочного поля, физики исходят из того, что все частицы, участвующие в слабом взаимодействии, служат источниками поля нового типа - поля слабых сил. Слабо взаимодействующие частицы, такие, как электроны и нейтрино, являются носителями "слабого заряда", который аналогичен электрическому заряду и связывает эти частицы со слабым полем.

Для представления поля слабого взаимодействия как калибровочного прежде всего необходимо установить точную форму соответствующей калибровочной симметрии. Дело в том, что симметрия слабого взаимодействия гораздо сложнее электромагнитного. Ведь и сам механизм этого взаимодействия оказывается более сложным. Во-первых, при распаде нейтрона, например, в слабом взаимодействии участвуют частицы по крайней мере четырех различных типов (нейтрон, протон, электрон и нейтрино). Во-вторых, действие слабых сил приводит к изменению их природы (превращению одних частиц в другие за счет слабого взаимодействия). Напротив, электромагнитное взаимодействие не изменяет природы участвующих в нем частиц.

Это определяет то обстоятельство, что слабому взаимодействию соответствует более сложная калибровочная симметрия, связанная с изменением природы частиц. Выяснилось, что для поддержания симметрии здесь необходимы три новых силовых поля, в отличие от единственного электромагнитного поля. Было получено и квантовое описание этих трех полей: должны существовать три новых типа частиц - переносчиков взаимодействия, по одному для каждого поля. Все весте они называются тяжелыми векторными бозонами со спином 1 и являются переносчиками слабого взаимодействия.

Частицы W + и W - являются переносчиками двух из трех связанных со слабым взаимодействием полей. Третье поле соответствует электрически нейтральной частице-переносчику, получившей название Z -частицы. Существование Z -частицы означает, что слабое взаимодействие может не сопровождаться переносом электрического заряда.

В создании теории электрослабого взаимодействия ключевую роль сыграло понятие спонтанного нарушения симметрии: не всякое решение задачи обязано обладать всеми свойствами его исходного уровня. Так, частицы, совершенно разные при низких энергиях, при высоких энергиях могут оказаться на самом деле одной и той же частицей, но находящейся в разных состояниях. Опираясь на идею спонтанного нарушения симметрии, авторы теории электрослабого взаимодействия Вайнберг и Салам сумели решить великую теоретическую проблему - они совместили казалось бы несовместимые вещи (значительная масса переносчиков слабого взаимодействия, с одной стороны, и идею калибровочной инвариантности, которая предполагает дальнодействующий характер калибровочного поля, а значит нулевую массу покоя частиц-переносчиков, с другой) и таким образом соединили электромагнетизм и слабое взаимодействие в единой теории калибровочного поля.

В этой теории представлено всего четыре поля: электромагнитное поле и три поля, соответствующие слабым взаимодействиям. Кроме того, введено постоянное на всем пространстве скалярное поле (т. н. поля Хиггса), с которым частицы взаимодействуют по разному, что и определяет различие их масс. (Кванты скалярного поля представляют собой новые элементарные частицы с нулевым спином. Их называют хиггсовскими (по имени физика П.Хиггса, предположившего их существование). Число таких хиггсовских бозонов может достигать нескольких десятков. На опыте такие бозоны пока не обнаружены. Более того, ряд физиков считает их существование необязательным, но совершенной теоретической модели без хиггсовскмих бозонов пока не найдено) Первоначально W и Z -кванты не имеют массы, но нарушение симметрии приводит к тому, что некоторые частицы Хиггса сливаются с W и Z -частицами, наделяя их массой.

Различия свойств электромагнитного и слабого взаимодействий теория объясняет нарушением симметрии. Если бы симметрия не нарушалась, то оба взаимодействия были бы сравнимы по величине. Нарушение симметрии влечет за собой резкое уменьшение слабого взаимодействия. Можно сказать, что слабое взаимодействие имеет столь малую величину потому, что W и Z -частицы очень массивны. Лептоны редко сближаются на столь малые расстояния (r < 1 0 n см., где n = - 1 6). Но при больших энергиях (> 1 0 0 Гэв), когда частицы W и Z могут свободно рождаться, обмен W и Z бозонами осуществляется столь же легко, как и обмен фотонами (безмассовыми частицами). Разница между фотонами и бозонами стирается.В этих условиях должно существовать полная симметрия между электромагнитным и слабым взаимодействием - электрослабое взаимодействие.

Проверка новой теории заключалась в подтверждении существования гипотетических W и Z -частиц. Их открытие стало возможным только с созданием очень больших ускорителей новейшего типа. Открытие в 1983 г. W и Z -частиц означало торжество теории электрослабого взаимодействия. Не было больше нужды говорить о четырех фундаментальных взаимодействиях. Их осталось три.

2.4. Квантовая хромодинамика

Следующий шаг на пути Великого объединения фундаментальных взаимодействий - слияние сильного взаимодействия с электрослабым. Для этого необходимо придать черты калибровочного поля сильному взаимодействию и ввести обобщенное представление об изотопической симметрии. Сильное взаимодействие можно представлять как результат обмена глюонами, который обеспечивает связь кварков (попарно или тройками) в адроны.

Замысел здесь состоит в следующем. Каждый кварк обладает аналогом электрического заряда, служащим источником глюонного поля. Его назвали цветом (Разумеется, это название не имеет никакого отношения к обычному цвету). Если электромагнитное поле порождается зарядом только одного сорта, то для создания более сложного глюонного поля потребовалось три различных цветовых заряда. Каждый кварк "окрашен" в один из трех возможных цветов, которые совершенно произвольно были названы красным, зеленым и синим. И соответственно антикварки бывают антикрасные, антизеленые и антисиние.

На следующем этапе теория сильного взаимодействия развивается по той же схеме, что и теория слабого взаимодействия. Требование локальной калибровочной симметрии (т.е. инвариантности относительно изменений цвета в каждой точке пространства) приводит к необходимости введения компенсирующих силовых полей. Всего требуется восемь новых компенсирующих силовых полей. Частицами - переносчиками этих полей являются глюоны, и, таким образом, из теории следует, что должно быть целых восемь различных типов глюонов. (В то время как переносчик электромагнитного взаимодействия - всего лишь один (фотона), а переносчиков слабого взаимодействия - три.) Глюоны имеют нулевую массу покоя и спин 1. Глюоны также имеют различные цвета, но не чистые, а смешанные (например, сине-антизеленый). Поэтому, испускание или поглощение глюона сопровождается изменением цвета кварка ("игра цветов"). Так, например, красный кварк, теряя красно-антисиний глюон, превращается в синий кварк, а зеленый кварк, поглощая сине-антизеленый глюон, превращается в синий кварк. В протоне, например, три кварка постоянно обмениваются глюонами, изменяя свой цвет. Однако такие изменения носят не произвольный характер, а подчиняются жесткому правилу: в любой момент времени "суммарный" цвет трех кварков должен представлять собой белый свет, т.е. сумму "красный + зеленый + синий". Это распространяется и на мезоны, состоящие из пары кварк - антикварк. Поскольку антикварк характеризуется антицветом, такая комбинация заведомо бесцветна ("белая"), например красный кварк в комбинации с антикрасным кварком образует бесцветный мезон.

С точки зрения квантовой хромодинамики (квантовой теории цвета) сильное взаимодействие есть не что иное, как стремление поддерживать определенную абстрактную симметрию природы: сохранение белого цвета всех адронов при изменении цвета их составных частей. Квантовая хромодинамика великолепно объясняет правила, которым подчиняются все комбинации кварков, взаимодействие глюонов между собой (глюон может распадаться на два глюона или два глюона слить в один - поэтому и появляются нелинейные члены в уравнении глюонного поля), сложную структуру адрона, состоящего из "одетых" в облака кварков и др.

Возможно, пока преждевременно оценивать квантовую хромодинамику как окончательную и завершенную теорию сильного взаимодействия, тем не менее ее достижения многообещающи.

Заключение.

Происхождение многих свойств элементарных частиц и природа присущих им взаимодействий в значительной мере остаются неясными. Возможно, понадобится ещё не одна перестройка всех представлений и гораздо более глубокое понимание взаимосвязи свойств микрочастиц и геометрических свойств пространства-времени, прежде чем теория элементарных частиц будет построена.

ЛИТЕРАТУРА

Алексеев В.П. Становление человечества. М.,1984. Бор Н. Атомная физика и человеческое познание. М.,1961 Борн М. Эйнштейновская теория относительности.М.,1964.

Дорфман Я.Г. Всемирная история физики с начала 19 века до середины 20 века. М.,1979.

Кемпфер Ф. Путь в современную физику. М.,1972.

Найдыш В.М. Концепции современного естествознания. Учебное пособие. М.,1999.

Баженов Л.Б. Строение и функции естественнонаучной теории. М.,1978.

Розенталь И.Л. Элементарные частицы и структура Вселенной. М, 1984.

Ядерная физика зародилась при изучении явлений, обнаруженных впервые всего 50-70 лет тому назад. За прошедшие после этого годы проводились глубокие исследования, в результате которых многократно исправлялись и изменялись взгляды на природу процессов, происходящих в микромире. Был накоплен большой экспериментальный материал, который еще анализируется и систематизируется. Это привело к созданию новых отраслей науки. Так, прошло немногим более десяти лет с тех пор, как выделилась особая ветвь ядерной физики, предметом изучения которой являются первичные свойства, пространственная структура, взаимодействия и взаимные связи различных элементарных частиц.

Часто эту отрасль ядерной физики называют физикой высоких энергий, потому что для проведения большинства экспериментов в данной области нужны частицы весьма высокой энергии. Это обусловлено двумя причинами: во-первых, для изучения пространственной структуры элементарных частиц необходимо использовать пучки частиц с очень малой длиной волны К, сравнимой с изучаемыми расстояниями; во-вторых, для генерации новых частиц необходимо превысить порог генерации, определяемый их массами. Так, если при изучении ядерных реакций были достаточны энергии бомбардирующих частиц порядка энергии связи нуклонов в ядрах, т. е. то для опытов по рождению пионов потребовались протоны, ускоренные до энергий а для экспериментов по рождению протон-антипротонных пар-частицы - с энергией 6 млрд. эв.

Естественным источником частиц высоких энергий являются космические лучи. Не случайно поэтому, что до начала 50-х годов развитие физики элементарных частиц было тесно связано с изучением процессов в космических лучах. Однако интенсивность потока их сравнительно мала, и поэтому интересующие исследователей события крайне редки. Кроме того, космические частицы

неуправляемы, многие параметры их при высоких энергиях неизвестны, и поэтому опыты не вполне однозначны.

Совершенно новые возможности появились, когда частицы высоких энергий научились получать в лабораториях с помощью ускорителей заряженных частиц. Современные ускорители - это огромные инженерные сооружения, оснащенные сложнейшей управляющей, контрольной и измерительной аппаратурой. Будущее физики элементарных частиц тесно связано с развитием и усовершенствованием ускорительной техники для генерации частиц еще больших энергий в пучках повышенной плотности.

В настоящее время, когда интенсивно разрабатывается теория элементарных частиц, на основе которой можно будет предсказывать и объяснять их характеристики, для подтверждения высказанных гипотез и теоретических построений необходима постановка новых экспериментов, проведение которых невозможно с помощью существующей аппаратуры. Поэтому разрабатываются все более сложные установки для исследования взаимодействий при энергиях в космических лучах и новые ускорители, на которых можно будет производить прецизионные опыты при энергиях -

В начале тридцатых годов были известны только четыре частицы: электрон протон нейтрон -квант. Первая элементарная частица - электрон - была предсказана Лоренцом и открыта Томсоном в 1897 г. Вторая частица - протон - открыта Резерфордом в 1911 г. Открытие нейтрона Чадвиком привело к представлению о том, что из этих четырех частиц можно построить все известные формы материи: ядра, атомы вещества и электромагнитное поле. Открытие других частиц значительно усложнило картину.

Остановимся на важнейших этапах проникновения в мир элементарных частиц.

Античастицы. Существование античастиц было предсказано Дираком, как об этом уже говорилось в § 26. В настоящее время известно, что, за немногими исключениями, всякой элементарной частице, в том числе и электрически нейтральной, соответствует так называемая античастица. Массы, спины, изотопические спины и четности частицы и античастицы в точности равны. Знаки электрического и нуклонного зарядов, странностей а также магнитных моментов частицы и античастицы противоположны. В вакууме античастицы имеют то же время жизни, что и частицы; так, например, позитрон и антипротон стабильны.

Отличительной особенностью пары - частица и античастица - является их способность аннигилировать при встрече друг с другом, превращаясь в другие формы материи; при этом энергия, эквивалентная сумме масс покоя пары, переходит в энергию покоя и кинетическую энергию новых частиц или в энергию

Наоборот, для рождения пары требуется затратить энергию, эквивалентную или превышающую ту, которая определяется их массами покоя.

Открытие Дирака послужило основанием для формулировки общего свойства материи, названного зарядовым сопряжением, согласно которому наряду с частицей должна существовать ее античастица.

Известны три частицы, у которых античастиц не существует. Можно сказать, что такие частицы тождественны своим античастицам. Это - фотон, -мезон и -мезон, их называют абсолютно нейтральными.

Принцип зарядового сопряжения 1 гласит, что законы природы не меняются для системы, в которой все частицы заменены античастицами. Как выяснилось впоследствии, этот принцип справедлив для ядерных («сильных») и электромагнитных взаимодействий и не выполняется для слабых взаимодействий. Иными словами, если исключить из рассмотрения слабое взаимодействие, то мир, составленный из частиц, и мир, составленный из античастиц, тождественны по своим свойствам.

Первой античастицей, которую обнаружили экспериментально, был позитрон. В 1933 г. впервые удалось наблюдать процесс образования пары фотонами радиоактивных источников по фотографиям треков в камере Вильсона.

И только более 20 лет спустя удалось наблюдать рождение пары протон-антипротон и таким образом доказать существование частицы зарядово сопряженной протону. Так как масса покоя протона почти в две тысячи раз превышает массу покоя электрона, то и энергия для создания протон-антипротонной пары должна быть в несколько тысяч раз больше энергии, затрачиваемой на электронно-позитронную пару. В лабораторных условиях частицы с энергией в миллиарды электрон-вольт удалось получить только в 1953 г. Поэтому лишь в 1955 г. группа американских физиков обнаружила антипротоны среди других частиц, создаваемых при бомбардировке медной мишени протонами с энергией в Появление антипротона при этом происходило в результате реакции

После столкновения каждая из четырех частиц движется в среднем с кинетической энергией порядка Пороговая энергия для рождения пары при столкновении двух свободных нуклонов в лабораторной системе координат (принимается, что один из нуклонов до соударения покоился) равна Если соударение происходит с нуклоном, связанным в ядре то пороговая энергия уменьшается за счет внутриядерного движения

нуклонов. Таким образом, энергии протонов, ускоренных в беватроне до достаточно для рождения пары

План первого опыта основывался на трех свойствах антипротона. Во-первых, так как стабилен, то он может пройти через длинную установку. Во-вторых, знак заряда может быть определен по отклонению в магнитном поле, а величина заряда - по ионизации среды. В-третьих, зная, скорость частицы, можно вычислить ее массу по кривизне траектории в данном магнитном поле.

Рис. 94. Схема эксперимента для обнаружения антипротона

Основная трудность заключается в том, что при бомбардировке мишени протонами рождается огромное количество -мезонов с такими же импульсами, какие должны быть у антипротона (на один антипротон рождается примерно 62 000 -мезонов). Они имеют ту же траекторию, но значительно большую скорость из-за малости массы. Разница в скоростях и была использована для отделения антипротонов от -мезонов. Схема первого опыта приведена на рис. 94. Медная мишень бомбардировалась пучком протонов. Рожденные при столкновении отрицательные частицы отклонялись магнитными призмами и фокусировались магнитными линзами и При заданных полях через линзы проходили единично заряженные частицы с импульсами, равными Для определения скорости частиц на их пути ставились два быстродействующих люминесцентных счетчика на расстоянии друг от друга. С точностью до сек они регистрировали время пролета частицами -метрового интервала. Антипротоны проходили его за сек, а -мезоны за сек при одинаковой величине импульса. Для исключения случайных совпадений в счетчиках вызванных двумя -мезонами, на пути пролетающих частиц

были поставлены два черенковских счетчика Счетчик регистрировал только те частицы, которые проходят со скоростью от 75 до 78% скорости света, т. е. со скоростью антипротона. Счетчик включенный в схему антисовпадений, давал сигнал, когда проходила частица со скоростью, большей 78% скорости света -мезона с импульсом относительная скорость Для исключения частиц, которые могут попасть снаружи, ставился люминесцентный счетчик регистрирующий только частицы, движущиеся в направлении пучка.

В результате частица регистрировалась как антипротон лишь по выполнении следующих требований: счетчики указывали, что она прошла за сек, счетчик не давал сигнала, скорость частицы, зарегистрированная счетчиком лежала в интервале скорости света, счетчик указывал, что частица прошла через всю длину селектора.

Всего в первом опыте было зарегистрировано 60 антипротонов. Для проверки надежности методики ставились контрольные опыты. Изменялись направления магнитных полей, и в установку направлялись протоны с таким же импульсом, равным Из результатов этого и последующих экспериментов стало очевидно, что массы протона и антипротона равны, что антипротон является стабильной частицей и исчезает только в результате аннигиляции, сопровождающейся в основном рождением нескольких -мезонов К

Антинейтроны впервые были получены в 1956 г. Для их получения использовался пучок антипротонов, которые в результате взаимодействия с нуклонами могут совершать так называемые процессы перезарядки:

Антинейтрон отличается от нейтрона направлением магнитного момента, оно уантинейтрона совпадает с направлением спина. Подобно антипротону, при встрече с нуклоном, антинейтрон аннигилирует с ним, в результате чего выделяется энергия

которая идет на образование и -мезонов. Именно это свойство антинейтрона было использовано для его обнаружения.

Так же как и нейтрон, антинейтрон является частицей нестабильной с тем же периодом полураспада мин. Распадается он по схеме

Как уже говорилось, в настоящее время античастицы известны почти для всех элементарных частиц.

Нейтрино. Следующая элементарная частица - нейтрино - также была предсказана теоретически в 1931 г. в связи с процессами -распада (см. § 19). Но только 20 лет спустя удалось обнаружить прямое взаимодействие ее с веществом.

Нейтрино с энергией имеет эффективное сечение взаимодействия что соответствует длине свободного пробега, равной примерно плотного вещества. Для сравнения укажем, что расстояние от Земли до Солнца составляет всего лишь Чтобы зарегистрировать хотя бы один акт взаимодействия при столь ничтожном эффективном сечении, надо располагать огромными потоками нейтрино. Поэтому такое наблюдение стало возможным только после появления мощных ядерных реакторов, внутри которых идут процессы -распада с образованием антинейтрино. Поток антинейтрино от реактора мощностью около 100 тыс. за толстой стеной, защищающей от нейтронов и но легко проницаемой для нейтрино, огромен и составляет приблизительно сек.

Это дало возможность Рейнесу и К. Коуэну в 1956 г. при работе с реактором зарегистрировать процесс:

Такая реакция возможна, если энергия антинейтрино превышает (это связано с тем, что масса нейтрона и позитрона на превышает массу протона и антинейтрино).

Детектором и одновременно мишенью в данных опытах служил жидкий сцинтиллятор объемом свысоким содержанием водорода и, кроме того, насыщенный кадмием. Его окружали свыше ста фотоумножителей, которые должны были регистрировать световые вспышки. На рис. 95 приведена схема процессов, идущих внутри детектора антинейтрино.

Рис. 95. Схема опыта для обнаружения нейтрино

Итак, антинейтрино вызывает превращению протона в нейтрон и позитрон в точке 1. Позитрон замедляется и аннигилирует с испусканием двух с энергией по в точке 2. За счет фото- и комптон-электронов они дают первую вспышку в сцинтилляторе. Нейтрон в течение нескольких микросекунд замедляется водородом, содержащимся в

сцинтилляторе, потом захватывается кадмием в точке 3. Происходит реакция и возникающие при этом захвате, дают второю вспышку. Схема запаздывающих совпадений регистрирует эти две вспышки.

Теоретически время аннигиляции позитрона имеет порядок сек. Диффузия нейтрона, который должен замедлиться до тепловых скоростей происходит в течение сек, т. е. на два порядка медленнее. Таким образом, на выходе радиосхемы появляются два коррелированных импульса с интервалом в 1 мксек. Этому соответствует сечение реакции (113), равное

Так как частота событий была мала и не превышала уровня фона от космических лучей, то возникла необходимость в постановке контрольных опытов:

а) изменялась мощность реактора, соответственно изменялась частота событий;

б) увеличивалось содержание кадмия в сцинтилляторе, в результате чего время диффузии нейтрона уменьшалось и интервал времени между импульсами сокращался.

В результате длительной работы установки было найдено, что детектор регистрирует за час примерно 3 импульса. Эти опыты по существу впервые дали экспериментальное доказательство существования нейтрино.

Согласно принципу зарядового сопряжения у нейтрино также должна быть античастица. Действительно, уже экспериментальные данные 1956-1957 гг. свидетельствовали в пользу существования антинейтрино, отличного по своим свойствам от нейтрино.

В 1962 г. был обнаружен совершенно новый факт: слабовзаимодействующие нейтральные частицы с нулевой массой существуют двух типов: при -распаде образуется так называемое электронное нейтрино - а при распаде -мезона образуется нейтрино мюонно - Эксперимент показал, что они отличаются друг от друга по типу взаимодействий.

Мезоны. Как уже говорилось в § 11, существование мезонов - частиц с массой, промежуточной между массами электрона и протона, - было предсказано в 1935 г. Юкава при построении теории ядерных сил.

Эти частицы являются квантами ядерного поля, испускаются и поглощаются протонами и нейтронами в процессе взаимодействия, а при подходящих условиях могут породить нуклон - анти-нзуклонные пары. При аннигиляции нуклона с антинуклоном их энергия и импульс переходят к мезонам.

В 1947 г. английский физик Пауэлл, изучая фотоэмульсионные пластинки, облученные на горах космическими лучами, обнаружил следы от частиц с массой . Эти частицы были названы -мезонами, или пионами. Последующие опыты показали, что существуют -мезоны с электрическим зарядом (+), (-) и (0). Положительный и отрицательный -мезоны нужно рассматривать

соответственно, как частицу и античастицу. Каждый из них имеет массу . Масса нейтрального -мезона равна . Спины ионов равны нулю. Все пионы являются нестабильными частицами. Заряженные ямезоны, имея время жизни сек, распадаются по схеме

Время жизни нейтрального -мезона порядка сек и распадается он на два

Свойства пионов оказались именно такими, какие предсказывались теорией Юкавы. Было подтверждено сильное взаимодействие -мезонов с ядром.

На десять лет ранее пиона в космических лучах был открыт -мезон (или мюон), который в отличие от -мезонов не взаимодействует с ядром и поэтому не может быть ответственным за поле ядерных сил. Возникает мюон в результате распада пиона, и за промежуток времени 2-10-6 сек в свою очередь распадается спонтанно на электрон (позитрон), нейтрино и антинейтрино по схеме

Масса мюонов равна они имеют либо отрицательный, либо положительный заряд. Нейтрального мюона не существует. Подобно электрону и позитрону и являются частицей и античастицей. Свойства мюонов, тип взаимодействий, в которых они участвуют, аналогичны свойствам электронов. В этом смысле их часто и рассматривают как нестабильные тяжелые электроны.

Поиски частиц Юкава привели к открытию и другого семейства мезонов - К-мезонов (каонов). Это еще более тяжелые нестабильные частицы. Масса К-мезонов равна . Время жизни -мезон является античастицей -мезона. Они могут распадаться самыми различными способами, преимущественно образуя и -мезоны.

Кроме заряженных существуют два нейтральных зарядовосопряженных К-мезона: Массы их равны 974 те, что несколько больше масс заряженных каонов. Нейтральные К-мезоны исключительно интересны, потому что каждый из них является изменяющейся суперпозицией двух других элементарных нейтральных частиц и имеют разное время жизни, различные схемы распада и слегка различные массы. Время жизни К равно сек и распадается он преимущественно на два -мезона.

Такие каоны называют короткоживущими. Время жизни равно сек и распадается он в большинстве случаев на три пиона. Его называют долгоживущим каоном. Разница в их массах определяется величиной

От электрона до нейтрино

Электрон

Позитрон

Нейтрино

От странности до очарования

Открытие странных частиц

Резонансы

«Очарованные» частицы

Заключение

Литература

Введение.

В середине и второй половине ХХ века в тех разделах физики, которые заняты изучением фундаментальной структуры материи, были получены поистине удивительные результаты. Прежде всего, это проявилось в открытии целого множества новых субатомных частиц. Их обычно называют элементарными частицами, но далеко не все из них действительно элементарны. Многие из них в свою очередь состоят из еще более элементарных частичек

Открытие элементарных частиц явилось закономерным результатом общих успехов в изучении строения вещества, достигнутых физикой в конце 19 в. Оно было подготовлено всесторонними исследованиями оптических спектров атомов, изучением электрических явлений в жидкостях и газах, открытием фотоэлектричества, рентгеновских лучей, естественной радиоактивности, свидетельствовавших о существовании сложной структуры материи

Мир субатомных частиц поистине многообразен. К ним относятся протоны и нейтроны, составляющие атомные ядра, а также обращающиеся вокруг ядер электроны. Но есть и такие частицы, которые в окружающем нас веществе практически не встречаются. Время их жизни чрезвычайно мало, оно составляет мельчайшие доли секунды. По истечении этого чрезвычайно короткого времени они распадаются на обычные частицы. Таких нестабильных короткоживущих частиц поразительно много: их известно уже несколько сотен

В 60-70-е годы физики были совершенно сбиты с толку многочисленностью, разнообразием и необычностью вновь открытых субатомных частиц. Казалось, им не будет конца. Совершенно непонятно, для чего столько частиц. Являются ли эти элементарные частицы хаотическими и случайными осколками материи? Или, возможно, они таят в себе ключ к познанию структуры Вселенной? Развитие физики в последующие десятилетия показало, что в существовании такой структуры нет никаких сомнений. В конце ХХ в. физика начинает понимать, каково значение каждой из элементарных частиц

Миру субатомных частиц присущ глубокий и рациональный порядок. В основе этого порядка - фундаментальные физические взаимодействия

Элементарные частицы в точном значении этого термина - первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии “Элементарные частицы” в современной физике находит выражение идея о первообразных сущностях, определяющих все известные свойства материального мира, идея, зародившаяся на ранних этапах становления естествознания и всегда игравшая важную роль в его развитии

Понятие “Элементарные частицы” сформировалось в тесной связи с установлением дискретного характера строения вещества на микроскопическом уровне. Обнаружение на рубеже 19-20 вв. мельчайших носителей свойств вещества - молекул и атомов - и установление того факта, что молекулы построены из атомов, впервые позволило описать все известные вещества как комбинации конечного, хотя и большого, числа структурных составляющих - атомов. Выявление в дальнейшем наличия составных слагающих атомов - электронов и ядер, установление сложной природы ядер, оказавшихся построенными всего из двух типов частиц (протонов и нейтронов) , существенно уменьшило количество дискретных элементов, формирующих свойства вещества, и дало основание предполагать, что цепочка составных частей материи завершается дискретными бесструктурными образованиями - элементарными частицами. Такое предположение, вообще говоря, является экстраполяцией известных фактов и сколько-нибудь строго обосновано быть не может. Нельзя с уверенностью утверждать, что частицы, элементарные в смысле приведённого определения, существуют. Протоны и нейтроны, например, длительное время считавшиеся элементарными частицами, как выяснилось, имеют сложное строение. Не исключена возможность того, что последовательность структурных составляющих материи принципиально бесконечна. Может оказаться также, что утверждение “состоит из...” на какой-то ступени изучения материи окажется лишённым содержания. От данного выше определения “элементарности” в этом случае придется отказаться. Существование элементарных частиц - это своего рода постулат, и проверка его справедливости - одна из важнейших задач физики

От электрона до нейтрино

Электрон

Исторически первой открытой элементарной частицей был электрон - носитель отрицательного элементарного электрического заряда в атомах

Это самая «старая» элементарная частица. В идейном плане он вошел в физику в 1881 г., когда Гельмгольц в речи в честь Фарадея указал, что атомная структура вещества вместе с законами электролиза Фарадея неизбежно приводит к мысли, что электрический заряд всегда должен быть кратен некоторому элементарному заряду, - т. е. к выводу о квантовании электрического заряда. Носителем отрицательного элементарного заряда, как мы теперь знаем, и является электрон

Максвелл же, создавший фундаментальную теорию электрических и магнитных явлений и использовавший существенным образом экспериментальные результаты Фарадея, не принимал гипотезы атомного электричества

Между тем «временная» теория о существовании электрона была подтверждена в 1897 г. в экспериментах Дж. Дж. Томсона, в которых он отождествил так называемые катодные лучи с электронами и измерил заряд и массу электрона. Частицы катодных лучей Томсон называл «корпускулами» или изначальными атомами. Слово «электрон» первоначально использовалось для обозначения величины заряда «корпускулы». И только со временем электроном стали называть саму частицу

Однако идея об электроне не сразу получила признание. Когда на лекции в Королевском обществе Дж. Дж. Томсон – первооткрыватель электрона – высказал предположение, что частицы катодных лучей следует рассматривать как возможные компоненты атома, некоторые его коллеги искренне считали, что он мистифицирует их. Сам Планк признавался в 1925 г., что не верил тогда, в 1900г., до конца в гипотезу об электроне

Можно сказать, что после опытов Милликена, измерившего в 1911г. заряды индивидуальных электронов, эта первая элементарная частица получила право на существование

Фотон

Прямое экспериментальное доказательство существования фотона было дано Р. Милликеном в 1912-1915 гг. в его исследованиях фотоэффекта, а также А. Комптоном в 1922 г., обнаружившим рассеяние рентгеновских лучей с изменением их частоты

Фотон – в некотором смысле особая частица. Дело в том, что масса его покоя в отличие от других частиц (кроме нейтрино) равна нулю. Поэтому его стали считать частицей не сразу: вначале полагали, что наличие конечной и отличной от нуля массы покоя – обязательная черта элементарной частицы

Фотон – это «оживленный» планковский квант света, т. е. квант света, несущий импульс

Кванты света ввел Планк в 1901 г. для того, чтобы объяснить законы излучения абсолютно черного тела. Но он был не частицами, а только минимально возможными «порциями» энергии света той или иной частоты

Хотя предположение Планка о квантовании энергии света абсолютно противоречило всей классической теории, сам Планк понял это не сразу. Ученый писал, что он «… пытался как-то ввести величину h в рамки классической теории. Однако вопреки всем таким попыткам эта величина оказалась весьма строптивой». Впоследствии эта величина получила название постоянной Планка (h =6*10 -27 эрг.с)

После введения постоянной Планка ситуация не стала более ясной

«Живыми» фотоны или кванты сделала теория относительности Эйнштейна, который в 1905 г. показал, что кванты должны иметь не только энергию, но и импульс, и что они являются в полном смысле частицами, только особенными, так как масса покоя их равна нулю, и двигаются они со скоростью света

Итак, вывод о существовании частицы электромагнитного поля - фотона - берёт своё начало с работы М. Планка (1900). Предположив, что энергия электромагнитного излучения абсолютно чёрного тела квантована, Планк получил правильную формулу для спектра излучения. Развивая идею Планка, А. Эйнштейн (1905) постулировал, что электромагнитное излучение (свет) в действительности является потоком отдельных квантов (фотонов), и на этой основе объяснил закономерности фотоэффекта

Протон

Протон был открыт Э. Резерфордом в 1919 г. в исследованиях взаимодействия альфа-частиц с атомными ядрами

Точнее открытие протона связано с открытием атомного ядра. Оно было сделано Резерфордом в результате бомбардировки атомов азота высоко энергетическими α-частицами. Резерфорд заключил, что «ядро атома азота распадается вследствие громадных сил, развивающихся при столкновении с быстрой α-частицей, и что освобождающийся водородный атом образует составную часть ядра азота». В 1920 г. ядра атома водорода были названы Резерфордом протонами (протон по-гречески означает простейший, первичный). Были и другие предложения по поводу названия. Так, например, предлагалось название «барон» (барос по-гречески означает тяжесть). Однако оно подчеркивало только одну особенность ядра водорода – его массу. Термин «протон» был существенно глубже и содержательнее, отражая фундаментальность протона, ибо протон – это простейшее ядро – ядро самого легкого изотопа водорода. Это, несомненно, один из наиболее удачных терминов в физике элементарных частиц. Таким образом, протоны - это частицы с единичным положительным зарядом и массой, в 1840 раз превышающей массу электрона

Нейтрон

Другая частица, входящая в состав ядра, - нейтрон - была открыта в 1932 Дж. Чедвиком при исследованиях взаимодействия α-частиц с бериллием. Нейтрон имеет массу, близкую к массе протона, но не обладает электрическим зарядом. Открытием нейтрона завершилось выявление частиц - структурных элементов атомов и их ядер

Открытие изотопов не прояснило вопрос о строении ядра. К этому времени были известны лишь протоны – ядра водорода, и электроны, а потому естественной была попытка объяснить существование изотопов различными комбинациями этих положительно и отрицательно заряженных частиц. Можно было бы думать, что ядра содержат А протонов, где А – массовое число, и А? Z электронов. При этом полный положительный заряд совпадает с атомным номером Z

Такая простая картина однородного ядра поначалу не противоречила выводу о малых размерах ядра, вытекавшему из опытов Резерфорда. “Естественный радиус” электрона r0 = e 2 /mc 2 (который получается, если приравнять электростатическую энергию e 2 /r0 заряда, распределенного по сферической оболочке, собственной энергии электрона mc 2) составляет r0 = 2,82*10 –15 м. Такой электрон достаточно мал, чтобы находиться внутри ядра радиусом 10 –14 м, хотя поместить туда большое число частиц было бы затруднительно. В 1920г. Резерфорд и другие ученые рассматривали возможность существования устойчивой комбинации из протона и электрона, воспроизводящей нейтральную частицу с массой, приблизительно равной массе протона. Однако из-за отсутствия электрического заряда такие частицы с трудом поддавались бы обнаружению. Вряд ли они могли бы и выбивать электроны из металлических поверхностей, как электромагнитные волны при фотоэффекте

Лишь спустя десятилетие, после того как естественная радиоактивность была глубоко исследована, а радиоактивное излучение стали широко применять, чтобы вызывать искусственное превращение атомов, было надежно установлено существование новой составной части ядра. В 1930 В.Боте и Г.Беккер из Гисенского университета проводили облучение лития и бериллия альфа-частицами и с помощью счетчика Гейгера регистрировали возникающее при этом проникающее излучение. Поскольку на это излучение не оказывали влияния электрические и магнитные поля, и оно обладало большой проникающей способностью, авторы пришли к выводу, что испускается жесткое гамма-излучение. В 1932 Ф.Жолио и И.Кюри повторили опыты с бериллием, пропуская такое проникающее излучение через парафиновый блок. Они обнаружили, что из парафина выходят протоны с необычно высокой энергией, и заключили, что, проходя через парафин, гамма-излучение в результате рассеяния порождает протоны. (В 1923 было установлено, что рентгеновские лучи рассеиваются на электронах, давая комптоновский эффект.)

Дж. Чедвик повторил эксперимент. Он также использовал парафин и с помощью ионизационной камеры, в которой собирался заряд, возникающий при выбивании электронов из атомов, измерял пробег протонов отдачи

Чедвик использовал также газообразный азот (в камере Вильсона, где вдоль следа заряженной частицы происходит конденсация водяных капелек) для поглощения излучения и измерения пробега атомов отдачи азота. Применив к результатам обоих экспериментов законы сохранения энергии и импульса, он пришел к выводу, что обнаруженное нейтральное излучение – это не гамма-излучение, а поток частиц с массой, близкой к массе протона. Чедвик показал также, что известные источники гамма-излучения не выбивают протонов

Тем самым было подтверждено существование новой частицы, которую теперь называют нейтроном

Расщепление металлического бериллия происходило следующим образом:

Альфа-частицы 4 2 He (заряд 2, массовое число 4) сталкивались с ядрами бериллия (заряд 4, массовое число 9), в результате чего возникали углерод и нейтрон

Открытие нейтрона явилось важным шагом вперед. Наблюдаемые характеристики ядер теперь можно было интерпретировать, рассматривая нейтроны и протоны как составные части ядер

Нейтрон, как теперь известно, на 0,1% тяжелее протона. Свободные нейтроны (вне ядра) претерпевают радиоактивный распад, превращаясь в протон и электрон. Это напоминает о первоначальной гипотезе составной нейтральной частицы. Однако внутри стабильного ядра нейтроны связаны с протонами и самопроизвольно не распадаются

Позитрон

Начиная с 30-х годов и вплоть до 50-х годов новые частицы открывались главным образом в космических лучах. В 1932 г. в их составе А. Андерсоном была обнаружена первая античастица - позитрон (е+) - частица с массой электрона, но с положительным электрическим зарядом. Позитрон был первой открытой античастицей. Существование е+ непосредственно вытекало из релятивистской теории электрона, развитой П. Дираком (1928-31) незадолго до обнаружения позитрона. В 1936г. американские физики К. Андерсон и С. Неддермейер обнаружили при исследовании космических лучей мюоны (обоих знаков электрического заряда) - частицы с массой примерно в 200 масс электрона, а в остальном удивительно близкие по свойствам к е-, е+

Позитроны (положительные электроны) в веществе не могут существовать, потому что при замедлении они аннигилируют, соединяясь с отрицательными электронами. В этом процессе, который можно рассматривать как обратный процесс рождения пар, положительный и отрицательный электроны исчезают, при этом образуются фотоны, которым передается их энергия. При аннигиляции электрона и позитрона в большинстве случаев образуются два фотона, значительно реже - один фотон. Однофотонная аннигиляция может произойти только в том случае, когда электрон сильно связан с ядром; участие ядра в этом случае необходимо для сохранения импульса. Двухфотонная аннигиляция, напротив, может происходить и со свободным электроном. Часто процесс аннигиляции происходит после практически полной остановки позитрона. В этом случае испускаются в противоположных направлениях два фотона с равными энергиями

Позитрон был открыт Андерсоном при изучении космических лучей методом камеры Вильсона. На рисунке, который является репродукцией с полученной Андерсоном фотографии в камере Вильсона, видна положительная частица, входящая в свинцовую пластину толщиной 0,6 см с импульсом 6,3 107 эВ/с и выходящая из нее с импульсом 2,3 107 эВ/с. Можно установить верхний предел для массы этой частицы, допустив, что она теряет энергию только на столкновения. Этот предел составляет 20 me. На основании этой и других сходных фотографий Андерсон выдвинул гипотезу о существовании положительной частицы с массой, примерно равной массе обычного электрона. Это заключение скоро было подтверждено наблюдениями Блэккета и Оккиалини в камере Вильсона. Вскоре после этого Кюри и Жолио открыли, что позитроны образуются при конверсии гамма-лучей радиоактивных источников, а также испускаются искусственными радиоактивными изотопами. Так как фотон, будучи нейтральным, образует пару (позитрон и электрон), то из принципа сохранения электрического заряда следует, что по абсолютной величине заряд позитрона равен заряду электрона

Первое количественное определение массы позитрона было проделано Тибо, который измерял отношение e/m методом трохоид и пришел к выводу, что массы позитрона и электрона отличаются не больше чем на 15 %. Более поздние эксперименты Шписа и Цана, которые использовали масс-спектрографическую установку, показали, что массы электрона и позитрона совпадают с точностью до 2 %. Еще позже Дюмонд и сотрудники измерили с большой точностью длину волны аннигиляционного излучения. С точностью до ошибок эксперимента (0,2 %) они получили такое значение длины волны, которого следовало ожидать в предположении, что позитрон и электрон имеют равные массы

Закон сохранения момента количества движения в применении к процессу рождения пар показывает, что позитроны обладают полуцелым спином и, следовательно, подчиняются статистике Ферми. Разумно предположить, что спин позитрона равен 1/2, как и спин электрона

Пионы и Мюоны. Открытие мезона

Открытие мезона, в отличие от открытия позитрона явилось не результатом единичного наблюдения, а скорее выводом из целой серии экспериментальных и теоретических исследований

В 1932 году Росси, используя метод совпадений, предложенный Боте и Кольхерстером, показал, что известную часть наблюдаемого на уровне моря космического излучения составляют частицы, способные проникать через свинцовые пластины толщиной до 1 м. Вскоре после этого он также обратил внимание на существование в космических лучах двух различных компонент. Частицы одной компоненты (проникающая компонента) способны проходить через большие толщи вещества, причем степень поглощения их различными веществами приблизительно пропорциональна массе этих веществ. Частицы другой компоненты (ливнеобразующая компонента) быстро поглощаются, в особенности тяжелыми элементами; при этом образуется большое число вторичных частиц (ливни). Эксперименты по изучению прохождения частиц космических лучей через свинцовые пластины, проведенные с камерой Вильсона Андерсоном и Неддемейером, также показали, что существуют две различные компоненты космических лучей. Эти эксперименты показали, что, в то время как в среднем потеря энергии частиц космических лучей в свинце совпадала по порядку величин с теоретически вычисленной потерей на столкновения, некоторые из этих частиц испытывали гораздо большие потери

В 1934 году Бете и Гайтлер опубликовали теорию радиационных потерь электронов и рождения пар фотонами. Свойства менее проникающей компоненты, наблюдавшейся Андерсоном и Неддемейером, находились в согласии со свойствами электронов, предсказанными теорией Бете и Гайтлера; при этом большие потери объяснялись радиационными процессами. Свойства ливнеобразующего излучения, обнаруженного Росси, также могли быть объяснены в предположении, что это излучение состоит из электронов и фотонов больших энергий. С другой стороны, признавая справедливость теории Бете и Гайтлера, приходилось делать вывод, что "проникающие" частицы в экспериментах Росси и менее поглощающиеся частицы в экспериментах Андерсона и Неддемейера отличаются от электронов. Пришлось предположить, что проникающие частицы тяжелее электронов, так как согласно теории потери энергии на излучение обратно пропорциональны квадрату массы

В связи с этим обсуждалась возможность краха теории излучения при больших энергиях. В качестве альтернативы Вильямс в 1934 году высказал предположение, что проникающие частицы космических лучей, возможно, обладают массой протона. Одна из трудностей, связанных с этой гипотезой, заключалась в необходимости существования не только положительных, но и отрицательных протонов, потому что эксперименты с камерой Вильсона показали, что проникающие частицы космических лучей имеют заряды обоих знаков. Более того, на некоторых фотографиях, полученных Андерсоном и Неддемейером в камере Вильсона, можно было видеть частицы, которые не излучали подобно электронам, но, однако, были не такими тяжелыми, как протоны. Таким образом, к концу 1936 года стало почти очевидным, что в космических лучах имеются, кроме электронов, еще и частицы до тех пор неизвестного типа, предположительно частицы с массой, промежуточной между массой электрона и массой протона. Следует отметить также, что в 1935 году Юкава из чисто теоретических соображений предсказал существование подобных частиц

Существование частиц с промежуточной массой было непосредственно доказано в 1937 году экспериментами Неддемейера и Андерсона, Стрита и Стивенсона

Эксперименты Неддемейера и Андерсона явились продолжением (с улучшенной методикой) упоминавшихся выше исследований по потерям энергии частиц космических лучей. Они были проведены в камере Вильсона, помещенной в магнитное поле и разделенной на две половины платиновой пластиной толщиной 1 см. Потери импульса для отдельных частиц космических лучей определялись путем измерения кривизны следа до и после пластины

Поглощающиеся частицы легко могут быть интерпретированы как электроны. Такая интерпретация подкрепляется тем, что поглощающиеся частицы в отличие от проникающих часто вызывают в платиновом поглотителе вторичные процессы и по большей части встречаются группами (по две и больше). Именно этого и следовало ожидать, так как многие из электронов, наблюдаемых при такой же геометрии эксперимента, что у Неддемейера и Андерсона, входят в состав ливней, образующихся в окружающем веществе. Что касается природы проникающих частиц, то здесь многое пояснили два следующих результата, полученных Неддемейером и Андерсоном

1). Несмотря на то, что поглощающиеся частицы относительно чаще встречаются при малых значениях импульсов, а проникающие частицы наоборот (более часты при больших значениях импульсов), имеется интервал импульсов, в котором представлены и поглощающиеся и проникающие частицы. Таким образом, различие в поведении этих двух сортов частиц не может быть приписано различию в энергиях. Этот результат исключает возможность считать проникающие частицы электронами, объясняя их поведение несправедливостью теории излучения при больших энергиях

2). Имеется некоторое число проникающих частиц с импульсами меньше 200 Мэв/с, которые производят не большую ионизацию, чем однозарядная частица вблизи минимума кривой ионизации. Это означает, что проникающие частицы космических лучей значительно легче, чем протоны, поскольку протон с импульсом меньше 200 Мэв/с производит удельную ионизацию, примерно в 10 раз превышающую минимальную

Стрит и Стивенсон попытались непосредственно оценить массу частиц космических лучей путем одновременного измерения импульса и удельной ионизации. Они использовали камеру Вильсона, которая управлялась системой счетчиков Гейгера-Мюллера, включенной на антисовпадения. Этим достигался отбор частиц, близких к концу своего пробега. Камера помещалась в магнитное поле напряженностью 3500 гс; камера срабатывала с задержкой около 1 сек, что позволяло произво­дить счет капелек. Среди большого числа фотографий Стрит и Стивенсон нашли одну, представлявшую чрезвычайный интерес

На этой фотографии виден след частицы с импульсом 29 Мэв/с, ионизация которой примерно в шесть раз превышает минимальную. Эта частица обладает отрицательным зарядом, поскольку она движется вниз. Судя по импульсу и удельной ионизации, ее масса оказывается равной примерно 175 массам электрона; вероятная ошибка, составляющая 25 %, обусловлена неточностью измерения удельной ионизации. Заметим, что электрон, обладающий импульсом 29 Мэв/с, имеет практически минимальную ионизацию. С другой стороны, частицы с таким импульсом и массой протона (либо движущийся вверх обычный протон, либо отрицательный протон, движущийся вниз) обладают удельной ионизацией, которая примерно в 200 раз превышает минимальную; кроме того, пробег такого протона в газе камеры должен быть меньше 1 см. В то же время след, о котором идет речь, ясно виден на протяжении 7 см, после чего он выходит из освещенного объема

Описанные выше эксперименты, безусловно, доказали, что проникающие частицы действительно являются более тяжелыми, чем электроны, но более легкими, чем протоны. Кроме того, эксперимент Стрита и Стивенсона дал первую примерную оценку массы этой новой частицы, которую мы можем теперь назвать ее общепринятым именем - мезон

Итак в 1936 г. А. Андерсон и С. Неддермейер открыли мюон (μ- мезон). Эта частица отличается от электрона только своей массой, которая примерно в 200 раз больше электронной

В 1947г. Пауэлл наблюдал в фотоэмульсиях следы заряженных частиц, которые были интерпретированы как мезоны Юкавы и названы π-мезонами или пионами. Продукты распада заряженных пионов, представляющие собой также заряженные частицы, были названы μ-мезонами или мюонами. Именно отрицательные мюоны и наблюдались в опытах Конверси: в отличие от пионов мюоны, как и электроны, не взаимодействуют сильно с атомными ядрами

Так как при распаде остановившихся пионов всегда образовывались мюоны строго определённой энергии, отсюда следовало, что при переходе π в μ должна образовываться ещё одна нейтральная частица (масса её оказалась очень близкой к нулю). С другой стороны, эта частица практически не взаимодействует с веществом, поэтому был сделан вывод, что она не может быть фотоном. Таким образом, физики столкнулись с новой нейтральной частицей, масса которой равна нулю

Итак, был открыт заряженный мезон Юкавы, распадающийся на мюон и нейтрино. Время жизни π-мезона относительно этого распада оказалось равным 2·10 -8 с. Потом выяснилось, что и мюон нестабилен, что в результате его распада образуется электрон. Время жизни мюона оказалось порядка 10 -6 с. Так как электрон, образующийся при распаде мюона, не имеет строго определенной энергии, то был сделан вывод, что наряду с электроном при распаде мюона образуются два нейтрино

В 1947 также в космических лучах группой С. Пауэлла были открыты p+ и p--мезоны с массой в 274 электронные массы, играющие важную роль во взаимодействии протонов с нейтронами в ядрах. Существование подобных частиц было предположено Х. Юкавой в 1935

Нейтрино

Открытие нейтрино - частицы, почти не взаимодействующей с веществом, ведёт своё начало от теоретической догадки В. Паули (1930), позволившей за счёт предположения о рождении такой частицы устранить трудности с законом сохранения энергии в процессах бета-распада радиоактивных ядер. Экспериментально существование нейтрино было подтверждено лишь в 1953 (Ф. Райнес и К. Коуэн, США)

При β-распаде ядер, как мы уже говорили, кроме электронов вылетают ещё нейтрино. Частица эта сначала была «введена» в физику теоретически. Именно существование нейтрино было постулировано Паули в 1929 году, за много лет до его экспериментального открытия (1956 год). Нейтрино нейтральная частица с нулевой (или ничтожно малой) массой понадобилась Паули для того, чтобы спасти закон сохранения энергии в процессе β-распада атомных ядер

Первоначально Паули назвал гипотетическую нейтральную частицу, образующуюся при β-распаде ядер, нейтроном (это было до открытия Чедвика) и предположил, что она входит в состав ядра

Насколько трудно было прийти к гипотезе нейтрино, образующихся в самом акте распада нейтрона, видно хотя бы из того, что всего за год до появления фундаментальной статьи Ферми о свойствах слабого взаимодействия исследователь, выступая с докладом о современном состоянии физики атомного ядра использовал термин «нейтрон» для обозначения двух частиц, которые называются сейчас нейтроном и нейтрино. «Например, согласно предложению Паули, - говорит Ферми, - было бы возможно вообразить, что внутри атомного ядра находятся нейтроны, которые испускались бы одновременно с β-частицами. Эти нейтроны могли бы проходить через большие толщи вещества, практически не теряя своей энергии, и поэтому были бы практически не наблюдаемы. Существование нейтрона, несомненно, могло бы просто объяснить некоторые пока непонятные вопросы, такие, как статистика атомных ядер, аномальные собственные моменты некоторых ядер, а также, быть может, природу проникающего излучения». В самом деле, когда речь идёт о частице, испускаемой с β-электронами и плохо поглощаемой веществом, необходимо иметь в виду нейтрино. Можно сделать вывод, что в 1932 году проблемы нейтрона и нейтрино были крайне запутаны. Понадобился год напряжённой работы теоретиков и экспериментаторов, чтобы разрешить как принципиальные, так и терминологические трудности

«После открытия нейтрона, - говорил Паули, - на семинарах в Риме мою новую частицу, испускаемую при β-распаде, Ферми стал называть «нейтрино», чтобы отличить её от тяжёлого нейтрона. Это итальянское название стало общепринятым»

В 30-годы теория Ферми была обобщена на позитронный распад (Вик, 1934 год) и на переходы с изменением углового момента ядра (Гамов и Теллер, 1937 год)

«Судьбу» нейтрино можно сравнить с «судьбой» электрона. Обе частицы были вначале гипотетическими – электрон был введён, чтобы привести атомную структуру вещества в соответствие с законами электролиза, а нейтрино – для спасения закона сохранения энергии в процессе β-распада. И только значительно позже они были открыты как реально существующие

В 1962 было выяснено, что существуют два разных нейтрино: электронное и мюонное. В 1964 в распадах нейтральных К-мезонов было обнаружено несохранение т. н. комбинированной чётности (введённой Ли Цзун-дао и Ян Чжэнь-нином и независимо Л. Д. Ландау в 1956), означающее необходимость пересмотра привычных взглядов на поведение физических процессов при операции отражения времени

От странности до очарования

Открытие странных частиц

Конец 40-х - начало 50-х гг. ознаменовались открытием большой группы частиц с необычными свойствами, получивших название “странных”. Первые частицы этой группы К+- и К--мезоны, L-, S+ -, S- -, X- -гипероны были открыты в космических лучах, последующие открытия странных частиц были сделаны на ускорителях - установках, создающих интенсивные потоки быстрых протонов и электронов. При столкновении с веществом ускоренные протоны и электроны рождают новые элементарные частицы, которые и становятся предметом изучения

В 1947 г. Батлер и Рочестер в камере Вильсона наблюдали две частицы, названные V -частицами. Наблюдалось два трека, как бы образующие латинскую букву V . Образование двух треков свидетельствовало о том, что частицы нестабильны и распадаются на другие, более лёгкие. Одна из V -частиц была нейтральной и распадалась на две заряженные частицы с противоположными зарядами. (Позже она была отождествлена с нейтральным К-мезоном, который распадается на положительный и отрицательный пионы). Другая была заряженной и распадалась на заряженную частицу с меньшей массой и нейтральную частицу. (Позже она была отождествлена с заряженным К+-мезоном, который распадается на заряженный и нейтральный пионы)

V -частицы допускают, на первый взгляд, и другую интерпретацию: их появление можно было бы истолковать не как распад частиц, а как процесс рассеяния. Действительно, процессы рассеяния заряженной частицы на ядре с образованием в конечном состоянии одной заряженной частицы, а также неупругого рассеяния нейтральной частицы на ядре с образованием двух заряженных частиц будут выглядеть в камере Вильсона так же, как и распад V -частиц. Но такая возможность легко исключалась на том основании, что процессы рассеивания более вероятны в более плотных средах. А V -события наблюдались не в свинце, который присутствовал в камере Вильсона, а непосредственно в самой камере, которая заполнена газом с меньшей плотностью (по сравнению с плотностью свинца)

Заметим, что если экспериментальное открытие π-мезона было в каком-то смысле «ожидаемым» в связи с необходимостью объяснить природу нуклонных взаимодействий, то открытие V -частиц, как и открытие мюона, оказалось полной неожиданностью

Открытие V -частиц и определение их самых «элементарных» характеристик растянулось более чем на десятилетие. После первого наблюдения этих частиц в 1947г. Рочестер и Батлер продолжали свои опыты ещё два года, но им не удалось наблюдать ни одной частицы. И только после того как аппаратуру подняли высоко в горы, были снова обнаружены V -частицы, а также и открыты новые частицы

Как выяснилось позднее, все эти наблюдения оказались наблюдениями различных распадов одной и той же частицы – К-мезона (заряженного или нейтрального)

«Поведение» V -частиц при рождении и последующем распаде привело к тому, что их стали называть странными

Странные частицы в лаборатории впервые получены в 1954г. Фаулером, Шаттом, Торндайком и Вайтмором, которые, используя пучок ионов от Брукхейвенского космотрона с начальной энергией 1,5 ГэВ, наблюдали реакции ассоциативного образования странных частиц

С начала 50-х гг. ускорители превратились в основной инструмент для исследования элементарных частиц. В 70-х гг. энергии частиц, разогнанных на ускорителях, составили десятки и сотни млрд. электрон-вольт (ГэВ). Стремление к увеличению энергий частиц обусловлено тем, что высокие энергии открывают возможность изучения строения материи на тем меньших расстояниях, чем выше энергия сталкивающихся частиц. Ускорители существенно увеличили темп получения новых данных и в короткий срок расширили и обогатили наше знание свойств микромира. Применение ускорителей для изучения странных частиц позволило более детально изучить их свойства, в частности особенности их распада, и вскоре привело к важному открытию: выяснению возможности изменения характеристик некоторых микропроцессов при операции зеркального отражения - т. н. нарушению пространств, чётности (1956). Ввод в строй протонных ускорителей с энергиями в миллиарды электрон-вольт позволил открыть тяжёлые античастицы: антипротон (1955), антинейтрон (1956), антисигма-гипероны (1960). В 1964 был открыт самый тяжёлый гиперон W- (с массой около двух масс протона)

Резонансы.

В 1960-х гг. на ускорителях было открыто большое число крайне неустойчивых (по сравнению с др. нестабильными элементарными частицами) частиц, получивших название “резонансов”. Массы большинства резонансов превышают массу протона. Первый из них D1 (1232) был известен с 1953 г. Оказалось, что резонансы составляют основная часть элементарных частиц

Сильное взаимодействие π-мезона и нуклона в состоянии с полным изотопическим спином 3/2 и моментом 3/2 приводит к появлению у нуклона возбуждённого состояния. Это состояние в течение очень короткого времени (порядка 10 -23 с) распадается на нуклон и π-мезон. Поскольку это состояние имеет вполне определённые квантовые числа, как и стабильные элементарные частицы, естественно было назвать его частицей. Чтобы подчеркнуть очень малое время жизни этого состояния, его и подобные короткоживущие состояния стали называть резонансными

Нуклонный резонанс, открытый Ферми в 1952 г., позже стали называть Δ 3/2 3/2 – изобарой (чтобы выделить тот факт, что спин и изотопический спин Δ-изобары равны 3/2). Так как время жизни резонансов незначительна, их нельзя наблюдать непосредственно, аналогично тому, как наблюдают «обычные» протон, π-мезоны и мюоны (по их следам в трековых приборах). Резонансы обнаруживают по характерному поведению сечений рассеивания частиц, а также изучая свойства продуктов их распада. Большинство известных элементарных частиц относится именно к группе резонансов

Открытие Δ-резонанса имело важнейшее значение для физики элементарных частиц

Заметим, что возбуждённые состояния или резонансы не являются абсолютно новыми объектами физики. Ранее они были известны в атомной и ядерной физике, где их существование связано с составной природой атома (образованного из ядра и электронов) и ядра (образованного из протонов и нейтронов). Что касается свойств атомных состояний, то они определяются только электромагнитным взаимодействием. Малые вероятности их распада связаны с малостью константы электромагнитного взаимодействия

Возбуждённые состояния существуют не только у нуклона (в этом случае говорят о его изобарных состояниях), но и у π-мезона (в этом случае говорят о мезонных резонансах)

«Причина появления резонансов в сильных взаимодействиях непонятна – пишет Фейнман, - сначала теоретики и не предполагали, что в теории поля с большой константой взаимодействия существуют резонансы. Позднее они осознали, что если константа взаимодействия достаточно велика, то возникают изобарные состояния. Однако истинное значение факта существования резонансов для фундаментальной теории остаётся неясной»

«Очарованные» частицы

В конце 1974г. две группы экспериментаторов (группа Тинга на протонном ускорителе в Брукхейвене и группа Б. Рихтера, работавшая на установке со встречными электронно-позитронными пучками в Стэнфорде) одновременно сделали важнейшее открытие в физике элементарных частиц: открыли новую частицу – резонанс с массой, равной 3,1 ГэВ (превышающей три массы протона)

Наиболее удивительным свойством этого резонанса оказалась его малая ширина распада – она равна всего 70кэВ, что соответствует времени жизни порядка 10 -23 с

Общепринятое объяснение природы ψ-мезонов основано на гипотезе существования наряду со «стандартными» тремя u -, d - и s -кварками ещё четвёртого, с-кварком. От известных ранее кварков с-кварк отличается значением нового квантового числа, названного чармом. Поэтому с-кварк получил название чармового – или очарованного – кварка

В 1974 были обнаружены и другие массивные (в 3-4 протонные массы) и в то же время относительно устойчивые y-частицы, с временем жизни, необычно большим для резонансов. Они оказались тесно связанными с новым семейством элементарных частиц - “очарованных”, первые представители которого (D0, D+, Lс) были открыты в 1976. В 1975 были получены первые сведения о существовании тяжёлого аналога электрона и мюона (тяжёлого лептона t)

За открытие ψ-частиц Тингу и Рихтеру в 1976 году была присуждена Нобелевская премия по физике

В 1977г. были открыты более тяжёлые (по сравнению с ψ-частицами) нейтральные мезоны с массами порядка 10ГэВ, т.е. более чем в десять раз тяжелее нуклонов. Как и в случае ψ-мезонов, эти мезоны, получившие название «ипсилон»-мезонов, были наблюдены в реакции образования мюонных пар в протон-ядерных столкновениях

Заключение

Таким образом, за годы, прошедшие после открытия электрона, было выявлено огромное число разнообразных микрочастиц материи. Для всех элементарных частиц характерны исключительно малые размеры: линейные размеры нуклона и пиона примерно равны 10 -15 м. Теория предсказывает, что размер электрона должен быть порядка 10 -19 м

Масса же подавляющего большинства частиц сравнима с массой протона, которая в энергетических единицах близка к 1 ГэВ (1000 МэВ)

Мир элементарных частиц оказался достаточно сложно устроенным. Неожиданными во многих отношениях оказались свойства обнаруженных элементарных частиц. Для их описания, помимо характеристик, заимствованных из классической физики, таких, как электрический заряд, масса, момент количества движения, потребовалось ввести много новых специальных характеристик, в частности для описания странных элементарных частиц - странность (К. Нишиджима, М. Гелл-Ман, 1953), “очарованных” элементарных частиц - “очарование” (американские физики Дж. Бьёркен, Ш. Глэшоу, 1964); уже названия приведённых характеристик отражают необычность описываемых ими свойств элементарных частиц

Изучение внутреннего строения материи и свойств элементарных частиц с первых своих шагов сопровождалось радикальным пересмотром многих устоявшихся понятий и представлений. Закономерности, управляющие поведением материи в малом, оказались настолько отличными от закономерностей классической механики и электродинамики, что потребовали для своего описания совершенно новых теоретических построений

Изучение внутреннего строения материи и свойств элементарных частиц с первых своих шагов сопровождалось радикальным пересмотром многих устоявшихся понятий и представлений. Закономерности, управляющие поведением материи в малом, оказались настолько отличными от закономерностей классической механики и электродинамики, что потребовали для своего описания совершенно новых теоретических построений. Такими новыми фундаментальными построениями в теории явились частная (специальная) и общая теория относительности (А. Эйнштейн, 1905 и 1916; Относительности теория, Тяготение) и квантовая механика (1924-27; Н.Бор, Л. де Бройль, В. Гейзенберг, Э. Шредингер, М. Борн). Теория относительности и квантовая механика знаменовали собой подлинную революцию в науке о природе и заложили основы для описания явлений микромира. Однако для описания процессов, происходящих с элементарными частицами, квантовой механики оказалось недостаточно. Понадобился следующий шаг - квантование классических полей (т. н. квантование вторичное) и разработка квантовой теории поля. Важнейшими этапами на пути её развития были: формулировка квантовой электродинамики (П. Дирак, 1929), квантовой теории b-распада (Э. Ферми, 1934), положившей начало современной теории слабых взаимодействий, квантовой мезодинамики (Юкава, 1935). Непосредственной предшественницей последней была т. н. b-теория ядерных сил (И. Е. Тамм, Д. Д. Иваненко, 1934; Сильные взаимодействия). Этот период завершился созданием последовательного вычислительного аппарата квантовой электродинамики (С. Томонага, Р. Фейнман, Ю. Швингер; 1944-49), основанного на использовании техники перенормировки (Квантовая теория поля). Эта техника была обобщена впоследствии применительно к другим вариантам квантовой теории поля

Квантовая теория поля продолжает развиваться и совершенствоваться и является основой для описания взаимодействий элементарных частиц У этой теории имеется ряд существенных успехов, и всё же она ещё очень далека от завершённости и не может претендовать на роль всеобъемлющей теории элементарных частиц Происхождение многих свойств элементарных частиц и природа присущих им взаимодействий в значительной мере остаются неясными. Возможно, понадобится ещё не одна перестройка всех представлений и гораздо более глубокое понимание взаимосвязи свойств микрочастиц и геометрических свойств пространства-времени, прежде чем теория элементарных частиц будет построена

Литература

Ахиезер А.И., Рекало М.П. Биография элементарных частиц. -К.: Наукова Думка, 1983

Дорфман Я.Г. Всемирная история физики с начала 19 века до середины 20 века. -М.,: 1979

Зисман Г.А., Тодес О.М. Курс общей физики. -К.: Изд. Эделвейс, 1994

Кемпфер Ф. Путь в современную физику. -М.: 1972

Крейчи. Мир глазами современной физики. -М.: Мир, 1974

Мякишев Г.Я. Элементарные частицы. -М.: Просвещение, 1977

Пасічний А.П. Фізика елементарних частинок. -К.: Вища школа,1980

Савельев И.В. Курс физики. -М.: Наука, 1989

Представление о том, что мир состоит из фундаментальных частиц, имеет долгую историю. Впервые мысль о существовании мельчайших невидимых частиц, из которых состоят все окружающие предметы, была высказана за 400 лет до нашей эры греческим философом Демокритом. Он назвал эти частицы атомами, т. е. неделимыми частицами. Наука начала использовать представление об атомах только в начале XIX века, когда на этой основе удалось объяснить целый ряд химических явлений. В 30-е годы XIX века в теории электролиза, развитой М. Фарадеем, появилось понятие иона и было выполнено измерение элементарного заряда. Но примерно с середины XIX века стали появляться экспериментальные факты, которые ставили под сомнение представления о неделимости атомов. Результаты этих экспериментов наводили на мысль о том, что атомы имеют сложную структуру и что в их состав входят электрически заряженные частицы. Это подтвердил французский физик Анри Беккерель, который в 1896 году открыл явление радиоактивности.

Затем последовало открытие первой элементарной частицы английским физиком Томсоном в 1897 году. Это был электрон, который окончательно обрел статус реального физического объекта и стал первой известной элементарной частицей в истории человечества. Его масса примерно в 2000 раз меньше массы атома водорода и равна:

m = 9.11*10^(-31) кг.

Отрицательный электрический заряд электрона называется элементарным и равен:

e = 0.60*10^(-19) Кл.

Ана­лиз атомных спектров показывает, что спин электрона равен 1/2, а его маг­нитный момент равен одному магнетону Бора. Электроны подчиняются статистике Ферми, так как они обладают полуцелым спином. Это согла­суется с экспериментальными данными о структуре атомов и о поведе­нии электронов в металлах. Электроны участвуют в электромагнитных, слабых и гравитационных взаимодействи­ях.

Второй открытой элементарной частицей был протон (от греч. protos - первый). Эту элементарную частицу открыл в 1919 году Резерфорд, исследуя продукты расщепления ядер атомов различных химических элементов. В буквальном смысле протон – ядро атома самого легкого изотопа водорода - протия. Спин протона равен 1/2. Протон обладает положительным элементарным зарядом +e. Его масса равна:

m = 1.67*10^(-27) кг.

или примерно 1836 масс электрона. Протоны входят в состав ядер всех атомов химических элементов. После этого в 1911 году Резерфордом была предложена планетарная модель атома, которая помогла ученым в дальнейших исследованиях состава атомов.



В 1932 году Дж. Чедвик открыл третью элементарную частицу нейтрон (от лат. neuter - ни тот, ни другой), который не имеет электрического заряда и обладает массой примерно 1839 масс электрона. Спин нейтрона также равен 1/2.

Вывод о существовании частицы электромагнитного поля - фотона - берёт своё начало с работы М. Планка (1900 год). Предположив, что энергия электромагнитного излучения абсолютно чёрного тела кванто­ванна (т.е. состоит из квантов), Планк получил правильную формулу для спектра излучения. Развивая идею Планка, А. Эйнштейн (1905 год) постулировал, что электро­магнитное излучение (свет) в действительности является потоком от­дельных квантов (фотонов), и на этой основе объяснил закономерности фотоэффекта. Прямые экспериментальные доказательства существо­вания фотона были даны Р. Милликеном в 1912 - 1915 годах и А. Комптоном в 1922 году.

Открытие нейтрино - частицы, почти не взаимодействующей с ве­ществом, ведёт своё начало от теоретической догадки В. Паули в 1930 году, позволившей за счёт предположения о рождении такой частицы устра­нить трудности с законом сохранения энергии в процессах бета-распада радиоактивных ядер. Экспериментально существование нейтрино было подтверждено лишь в 1953 году Ф. Райнесем и К. Коуэном.

Но в веществе состоят не только частицы. Также существуют античастицы - элементарные частицы, имеющие те же массу, спин, время жизни и некоторые другие внутренние характеристики, что и их «двойники»-частицы, но отличающиеся от частиц знаками электрического заряда и магнитного момента, барионного заряда, лептонного заряда, странности и др. Все элементарные частицы, кроме абсолютно нейтральных, имеют свои античастицы.

Первой открытой античастицей стал позитрон (от лат. positivus - положительный) - частица с массой электрона, но положительным электрическим зарядом. Эта античастица была обнаружена в составе космических лучей американским физиком Карлом Дейвидом Андерсоном в 1932 году. Интересно то, что существование позитрона было теоретически предсказано английским физиком Полем Дираком почти за год до экспериментального открытия. Более того, Дирак предсказал так называемые процессы аннигиляции (исчезновения) и рождения электронно-позитронной пары. Сама по себе аннигиляция пары - один из видов превращений элементарных частиц, происходящий при столкновении частицы с античастицей. При аннигиляции частица и античастица исчезают, превращаясь в другие частицы, число и сорт которых лимитируются законами сохранения. Процесс, обратный аннигиляции, - рождение пары. Сам по себе позитрон стабилен, но в веществе из-за аннигиляции с электронами существует очень короткое время. Аннигиляция электрона и позитрона заключается в том, что они при встрече исчезают, превращаясь в γ- кванты (фотоны). А при столкновении γ- кванта с каким-либо массивным ядром происходит рождение электронно-позитронной пары.



В 1955 году была обнаружена еще одна античастица - антипротон, а несколько позже - антинейтрон. Антинейтрон, так же как и нейтрон, не имеет электрического заряда, но он, бесспорно, относится к античастицам, поскольку участвует в процессе аннигиляции и рождения пары нейтрон - антинейтрон.

Возможность получения античастиц привела ученых к идее о создании антивещества. Атомы антивещества должны быть построены таким образом: в центре атома - отрицательно заряженное ядро, состоящее из антипротонов и антинейтронов, а вокруг ядра обращаются позитроны, имеющие положительный заряд. В целом атом также получается нейтрален. Эта идея получила блестящее экспериментальное подтверждение. В 1969 году на ускорителе протонов в городе Серпухове советские физики получили ядра атомов антигелия. Также в 2002 году на ускорителе ЦЕРНа в Женеве было получено 50000 атомов антиводорода. Но, несмотря на это, скопления антивещества во Вселенной пока не обнаружены. Также становится ясно, что при малейшем взаимодействии антивещества с любым веществом произойдет их аннигиляция, которая будет сопровождаться огромным выбросом энергии, в несколько раз превосходящей энергию атомных ядер, что крайне небезопасно для людей и окружающей среды.

В настоящее время экспериментально обнаружены античастицы почти всех известных элементарных частиц.

Большую роль в физике элементарных частиц играют законы сохранения, устанавливающие равенство между определенными комбинациями величин, характеризующих начальное и конечное состояние системы. Арсенал законов сохранения в квантовой физике больше, чем в классической. Он пополнился законами сохранения различных четностей (пространственной, зарядовой), зарядов (лептонного, барионного и др.), внутренних симметрий, свойственных тому или иному типу взаимодействия.

Выделение характеристик отдельных субатомных частиц - важный, но только начальный этап познания их мира. На следующем этапе нужно еще понять, какова роль каждой отдельной частицы, каковы ее функции в и структуре материи.

Физики выяснили, что прежде всего свойства частицы определяются ее способностью (или неспособностью) участвовать в сильном взаимодействии. Частицы, участвующие в сильном взаимодействии, образуют особый класс и называются адронами. Частицы, участвующие в слабом взаимодействии и не участвующие в сильном, называются лептонами. Кроме того, существуют частицы-переносчики взаимодействий.

Лептоны.

Лептоны считаются истинно элементарными частицами. Хотя лептоны могут иметь электрический заряд, а могут и не иметь, спин у всех у них равен 1/2. Среди лептонов наиболее известен электрон. Электрон - это первая из открытых элементарных частиц. Как и все остальные лептоны, электрон, по-видимому, является элементарным (в собственном смысле этого слова) объектом. Насколько известно, электрон не состоит из каких-то других частиц.

Другой хорошо известный лептон - нейтрино. Нейтрино являются наиболее распространенными частицами по Вселенной. Вселенную можно представить безбрежным нейтринным морем, в котором изредка встречаются острова в виде атомов. Но несмотря на такую распространенность нейтрино, изучать их очень сложно. Как мы уже отмечали, нейтрино почти неуловимы. Не участвуя ни в сильном, ни в электромагнитном взаимодействиях, они проникают через вещество, как будто его вообще нет. Нейтрино - это некие "призраки физического мира".

Достаточно широко распространены в природе мюоны, на долю которых приходится значительная часть космического излучения. Во многих отношениях мюон напоминает электрон: имеет тот же заряд и спин, участвует в тех те взаимодействиях, но имеет большую массу (около 207 масс электрона) и нестабилен. Примерно за две миллионные доли секунды мюон распадается на электрон и два нейтрино. В конце 70-х годов был обнаружен третий заряженный лептон, получивший название "тау-лептон". Это очень тяжелая частица. Ее масса около 3500 масс электрона. Но во всем остальном он ведет себя подобно электрону и мюону.

В 60-х годах список лептонов значительно расширился. Было установлено, что существует несколько типов нейтрино: электронное нейтрино, мюонное нейтрино и тау-нейтрино. Таким образом, общее число разновидностей нейтрино равно трем, а общее число лептонов - шести. Разумеется, у каждого лептона есть своя античастица; таким образом, общее число различных лептонов равно двенадцати. Нейтральные лептоны участвуют только в слабом взаимодействии; заряженные - в слабом и электромагнитном. Все лептоны участвуют в гравитационном взаимодействии, но не способны к сильным.

Адроны.

Если лептонов существует чуть свыше десятка, то адронов сотни. Такое множество адронов наводит на мысль, что адроны не элементарные частицы, а построены из более мелких частиц. Все адроны встречаются в двух разновидностях - электрически заряженные и нейтральные. Среди адронов наиболее известны и широко распространены нейтрон и протон, которые в свою очередь относятся к классу нуклонов. Остальные адроны короткоживущие и быстро распадаются. Адроны участвуют во всех фундаментальных взаимодействиях. Они делятся на барионы и мезоны. К барионам относятся нуклоны и гипероны.

Для объяснения существования ядерных сил взаимодействия между нуклонами квантовая теория требовала существования особых элементарных частиц с массой больше массы электрона, но меньше массы протона. Эти предсказанные квантовой теорией частицы позже были названы мезонами. Мезоны были обнаружены экспериментально. Их оказалось целое семейство. Все они оказались короткоживущими нестабильными частицами, живущими в сободном состоянии миллиардные доли секунды. Например, заряженный пи-мезон или пион, имеет массу покоя 273 электронных массы и время жизни:

t = 2.6*10^(-8) с.

Далее при исследованиях на ускорителях заряженных частиц были обнаружены частицы с массами, превосходящими массу протона. Эти частицы были названы гиперонами. Их обнаружилось даже больше, чем мезонов. К семейству гиперонов относятся: лямбда-, сигма-, кси- и омега-минус-гипероны.

Существование и свойства большинства известных адронов были установлены в опытах на ускорителях. Открытие множества разнообразных адронов в 50-60-x годах крайне озадачило физиков. Но со временем адроны удалось классифицировать по массе, заряду и спину. Постепенно стала выстраиваться более или менее четкая картина. Появились конкретные идеи о том, как систематизировать хаос эмпирических данных, раскрыть тайну адронов в научной теории. Решающий шаг здесь был сделан в 1963 году, когда была предложена теория кварков.

Теория кварков.

Теория кварков - это теория строения адронов. Основная идея этой теории очень проста. Все адроны построены из более мелких частиц, называемых кварками. Значит, кварки - это более элементарные частицы, чем адроны. Кварки являются гипотетическими частицами, т.к. не наблюдались в свободном состоянии. Барионный заряд кварков равен 1/3. Они несут дробный электрический заряд: они обладают зарядом, величина которого составляет либо -1/3 или +2/3 фундаментальной единицы - заряда электрона. Комбинация из двух и трех кварков может иметь суммарный заряд, равный нулю или единице. Все кварки имеют спин Ѕ, поэтому они относятся к фермионам. Основоположники теории кварков Гелл-Манн и Цвейг, чтобы учесть все известные в 60-е годы адроны ввели три сорта (цвета) кварков: u (от up - верхний), d (от down - нижний) и s (от strange - странный).

Кварки могут соединяться друг с другом одним из двух возможных способов: либо тройками, либо парами кварк - антикварк. Из трех кварков состоят сравнительно тяжелые частицы - барионы. Наиболее известны из барионов нейтрон и протон. Более легкие пары кварк - антикварк образуют частицы, получившие название мезоны - "промежуточные частицы". Например, протон состоит из двух u-кварков и одного d-кварков (uud), а нейтрон - из двух d-кварков и одного u-кварка (udd). Чтобы это "трио" кварков не распадалось, необходима удерживающая их сила, некий "клей".

Оказалось, что результирующее взаимодействие между нейтронами и протонами в ядре представляет собой просто остаточный эффект более мощного взаимодействия между самими кварками. Это объяснило, почему сильное взаимодействие кажется столь сложным. Когда протон "прилипает" к нейтрону или другому протону, во взаимодействии участвуют шесть кварков, каждый из которых взаимодействует со всеми остальными. Значительная часть сил тратится на прочное склеивание трио кварков, а небольшая - на скрепление двух трио кварков друг с другом. Но позднее выяснилось, что кварки участвуют и в слабом взаимодействии. Слабое взаимодействие может изменять цвет кварка. Именно так происходит распад нейтрона. Один из d-кварков в нейтроне превращается в u-кварк, а избыток заряда уносит рождающийся одновременно электрон. Аналогичным образом, изменяя аромат, слабое взаимодействие приводит к распаду и других адронов.

То обстоятельство, что из различных комбинаций трех основных частиц можно получить все известные адроны, стало триумфом теории кварков. Но в 70-е годы были открыты новые адроны (пси-частицы, ипсилон-мезон и др.). Этим был нанесен удар первому варианту теории кварков, поскольку в ней уже не было места ни для одной новой частицы. Все возможные комбинации из кварков и их антикварков были уже исчерпаны.

Проблему удалось решить за счет введения трех новых цветов. Они получили название - с - кварк (charm - очарование), b - кварк (от bottom - дно, а чаще beauty - красота, или прелесть), и впоследствии был введен еще один цвет - t (от top - верхний).

До настоящего времени кварки и антикварки в свободном виде не наблюдались. Однако сомнений в реальности их существования практически не осталось. Более того, ведутся поиски следующих за кварками «настоящих» элементарных частиц - глюонов, которые являются носителями взаимодействий между кварками, т.к. кварки скрепляются между собой сильным взаимодействием, а глюоны (цветовые заряды) являются переносчиками сильного взаимодействия. Область физики элементарных частиц, изучающая взаимодействие кварков и глюонов, носит название квантовой хромодинамики. Как квантовая электродинамика - теория электромагнитного взаимодействия, так квантовая хромодинамика - теория сильного взаимодействия. Квантовая хромодинамика - квантовополевая теория сильного взаимодействия кварков и глюонов, которое осуществляется путем обмена между ними - глюонами (аналогами фотонов в квантовой электродинамике). В отличие от фотонов, глюоны взаимодействуют друг с другом, что приводит, в частности, к росту силы взаимодействия между кварками и глюонами при удалении их друг от друга. Предполагается, что именно это свойство определяет короткодействие ядерных сил и отсутствие в природе свободных кварков и глюонов.

По современным представлениям, адроны имеют сложную внутреннюю структуру: барионы состоят из 3 кварков, мезоны - из кварка и антикварка.

Хотя и существует некоторая неудовлетворенность кварковой схемой, большинство физиков считает кварки подлинно элементарными частицами - точечными, неделимыми и не обладающими внутренней структурой. В этом отношении они напоминают лептоны, и уже давно предполагается, что между этими двумя различными, но сходными по своей структуре семействами должна существовать глубокая взаимосвязь.

Таким образом, наиболее вероятное число истинно элементарных частиц (не считая переносчиков фундаментальных взаимодействий) на конец ХХ века равно 48. Из них: лептонов (6х2) = 12 и кварков (6х3)х2 =36.