Магнитное действие тока. Опыт Эрстеда. Доклад: Магнитное действие тока

Марио Льоцци

ОПЫТ ЭРСТЕДА

Возможное существование тесной связи между электричеством и магнетизмом предполагали уже самые первые исследователи, пораженные аналогией электростатических и магнитостатических явлений притяжения и отталкивания. Это представление было настолько распространено, что сначала Кардан, а затем и Гильберт считали его предрассудком и всячески старались доказать различие этих двух явлений. Но это предположение снова возникло в XVIII веке уже с большим основанием, когда было установлено намагничивающее действие молнии, а Франклину и Беккариа удалось добиться намагничивания с помощью разряда лейденской банки. Законы Кулона, формально одинаковые для электростатических и магнитостатических явлений, вновь выдвинули эту проблему.

После того как благодаря батарее Вольта появилась возможность получать электрический ток в течение долгого времени, попытки обнаружить связь между электрическими и магнитными явлениями стали более частыми и более интенсивными. И все же, несмотря на интенсивные поиски, открытие заставило себя ждать целых двадцать лет. Причины такой задержки следует искать в научных представлениях, господствовавших в те времена. Все силы понимались только в ньютоновском смысле, т. е. как силы, которые действуют между материальными частицами по соединяющей их прямой. Поэтому исследователи старались обнаружить силы именно этого рода, создавая приспособления, с помощью которых они надеялись обнаружить предполагаемое притяжение или отталкивание между магнитным полюсом и электрическим током (или, выражаясь более общим образом, между «гальваническим флюидом» и магнитным флюидом) или же пытались намагнитить стальную иглу, направляя по ней ток.

Взаимодействие между гальваническим и магнитным флюидом пытался обнаружить и Джан Доменико Романьози (1761-1835) в опытах, описанных им в статье 1802 г., на которую Гульельмо Либри (1803-1869), Пьетро Конфильякки (1777-1844) и многие другие ссылались потом, приписывая Романьози приоритет этого открытия. Достаточно, однако, прочесть эту статью, чтобы убедиться, что в опытах Романьози, проводившихся с батареей с незамкнутой цепью и магнитной иглой, вообще нет электрического тока, и поэтому самое большее, что он мог наблюдать,- это обычное электростатическое действие.

Когда 21 июля 1820 г. в одной очень лаконичной статье на четырех страничках (на латинском языке), озаглавленной «Experimenta circa effectum conflictus electrici in acum magneticam» датский физик Ганс Христиан Эрстед (1777-1851) описал фундаментальный опыт по электромагнетизму, доказывающий, что ток в прямолинейном проводнике, идущем вдоль меридиана, отклоняет магнитную иглу от направления меридиана, интерес и удивление ученых были велики не только потому, что было получено столь, долго разыскивавшееся разрешение проблемы, но и потому, что новый опыт, как сразу же стало ясно, указывал на силу неньютоновского типа. В самом деле, из опыта Эрстеда ясно было видно, что сила, действующая между магнитным полюсом и элементом тока, направлена не по соединяющей их прямой, а по нормали к этой прямой, т. е. она, как тогда говорили, является «силой поворачивающей». Значение этого факта чувствовалось, уже тогда, хотя полностью оно было осознано лишь много лет спустя. Опыт Эрстеда вызвал первую трещину в ньютоновской модели мира.

О том затруднении, в которое попала наука, можно судить, например, по замешательству, в котором находились итальянские, французские, английские и немецкие переводчики, переводившие на родной язык латинскую статью Эрстеда. Часто, сделав буквальный перевод, представлявшийся им неясным, они приводили в примечании латинский оригинал.

Действительно неясным в статье Эрстеда еще и сегодня остается объяснение, которое он пытается дать наблюдавшимся им явлениям, обусловленным, по его мнению, двумя противоположно направленными спиральными движениями вокруг проводника «электрической материи, соответственно положительной и отрицательной».

Исключительность явления, открытого Эрстедом, сразу же привлекла к нему большое внимание экспериментаторов и теоретиков. Араго, вернувшись из Женевы, где он присутствовал при аналогичных опытах, повторенных Де ла Ривом, рассказал о них в Париже, а в сентябре того же 1820 г. собрал свою известную установку с вертикальным проводником тока, проходящим сквозь горизонтально расположенный кусок картона, посыпанный железными опилками. Но окружностей из железных опилок, которые мы обычно замечаем при проведении этого опыта, он не обнаружил. Экспериментаторы видят ясно эти окружности с тех пор, как Фарадей выдвинул теорию «магнитных кривых», или «силовых линий». Действительно, нередко, чтобы увидеть что-то, нужно очень желать этого! Араго же видел только, что проводник, по его выражению, «облепливается железными опилками так, как если б это был магнить», из чего он сделал заключение, что «ток вызывает магнетизм в железе, которое не подвергалось предварительному намагничиванию».

Все в том же 1820 г. Био зачитал два доклада (30 октября и 18 декабря), в которых сообщал о результатах проведенного им вместе с Саваром экспериментального исследования. Пытаясь открыть закон, определяющий зависимость величины электромагнитной силы от расстояния, Био решил воспользоваться методом колебаний, которым раньше пользовался уже Кулон. Для этого он собрал установку, состоящую из толстого вертикального проводника, расположенного рядом с магнитной стрелкой: при включении тока в проводнике стрелка начинает колебаться с периодом, зависящим от электромагнитной силы, действующей на полюса при различных расстояниях от центра стрелки до проводника с током. Измерив эти расстояния, Био и Савар вывели носящий теперь их имя хорошо известный закон, который в своей первой формулировке не учитывал интенсивности тока (ее тогда не умели еще измерять).

Узнав о результатах опытов Био и Савара, Лаплас заметил, что действие тока можно рассматривать как результат отдельных действий на полюса стрелки бесконечного числа бесконечно малых элементов, на которые можно разделить ток, и заключил из этого, что каждый элемент тока действует на каждый полюс с силой, обратно пропорциональной квадрату расстояния этого элемента от полюса. О том, что Лаплас принял участие в обсуждении этой проблемы, говорится у Био в его работе «Precis elementaire de physique ехрёrimentale» (2-е изд., II, Париж, 1821, стр. 122). В сочинениях же Лапласа, насколько нам известно, нет никакого намека на такое замечание, из чего можно заключить, что он, видимо, высказал это в устной дружеской беседе с самим Био.

Чтобы пополнить свои сведения об этой элементарной силе, Био попытался, на этот раз один, определить опытным путем, изменяется ли и если изменяется, то каким образом действие элемента тока на полюс с изменением угла, образуемого направлением тока и прямой, соединяющей середину элемента с полюсом. Опыт состоял в сравнении того, какое действие оказывает на одну и ту же стрелку параллельный ей ток и ток, направленный под углом. Из данных опыта Био путем расчета, которого он не опубликовал, но который, безусловно, был ошибочным, как это показал в 1823 г. Ф. Савари (1797-1841), определил, что эта сила пропорциональна синусу угла, образуемого направлением тока и прямой, соединяющей рассматриваемую точку с серединой элемента тока. Таким образом, то, что сейчас называют «первым элементарным законом Лапласа», в значительной мере является открытием Био.

ГАЛЬВАНОМЕТР

Упомянутый уже нами опыт Араго, объяснявшийся многими физиками того времени тем, что провод, по которому проходит ток, намагничивается, был сразу правильно понят Ампером, тотчас же предсказавшим, а затем вскоре и подтвердившим экспериментально, что стальной брусок, помещенный внутри спирали, по которой проходит ток, приобретает постоянную намагниченность. Таким образом, был найден новый метод намагничивания, гораздо более эффективный, простой и удобный, нежели прежние. Но самое главное, этим был дан толчок для создания простого, но очень ценного приспособления - электромагнита, который используется в многочисленных научных и технических приборах. Первый подковообразный электромагнит сделал в 1825 г. американец Уильям Стерджен (1783- 1850); этот электромагнит немало удивил исследователей быстротой намагничивания и размагничивания бруска мягкого железа при включении или выключении тока в проводнике, которым был обмотан брусок. Конструкцию Стерджена улучшили одновременно и независимо друг от друга в 1831 г. Молль (1785-1838) и американец Джозеф Генри (1797-1878).

За первой, написанной на латинском языке статьей Эрстеда последовала вторая, написанная по-немецки, которая тем не менее осталась малоизвестной. В ней Эрстед показал взаимность открытого им электромагнитного явления. Он подвешивал к проволоке маленькую батарейку, замыкал цепь и регистрировал ее вращение при приближении к ней магнита. То же самое, независимо от Эрстеда, обнаружил и Ампер, которому обычно это открытие и приписывается. Еще проще продемонстрировал действие магнита на подвижный элемент тока Дэви, приблизив по совету Араго полюс магнита к электрической дуге. Стерджен видоизменил опыт Дэви и придал своему эксперименту тот вид, в каком и сегодня он демонстрируется на уроках физики, когда дуга непрерывно вращается в магнитном поле.

Но первым физиком, которому удалось получить вращение проводника с током в магнитном поле, был Фарадей. В 1821 г. он сконструировал очень простое приспособление: конец подвешенного проводника был опущен в резервуар с ртутью, в который снизу входил слегка выступающий над поверхностью ртути вертикальный магнит. При пропускании тока через ртуть и проводник последний начинал вращаться вокруг магнита. Опыт Фарадея, блестяще модифицированный Ампером, бесчисленными способами варьировался затем на протяжении всего XIX века. Здесь мы укажем лишь на описанное в 1823 г. «колесо Барлоу», потому что оно представляет собой разновидность электрического мотора, который вполне может служить еще и сегодня педагогам для учебных целей. Это металлическое колесо с горизонтальной осью, край которого погружен в ванночку с ртутью и находится между полюсами подковообразного железного магнита. Если от оси колеса, к его периферии и далее через ртуть течет ток, колесо вращается.

Правила Эрстеда об отклонении магнитной стрелки и соответствующее правило Ампера указывали на то, что отклонение возрастает, если тот же ток пропускать и над магнитной стрелкой и под ней. Это явление, предсказанное Лапласом и хорошо изученное Ампером, было использовано в 1820 г. Иоганном Швейггером (1779-1857) при конструировании мультипликатора, представлявшего собой прямоугольную рамку, обмотанную несколько раз проводом, по которому протекал ток. В середине рамки помещалась магнитная стрелка. Почти одновременно Авогадро и Микелотти построили другой тип мультипликатора, несомненно, гораздо менее удачный, чем швейггеровский; описание его опубликовано в 1823 г. Однако в мультипликаторе Авогадро и Микелотти имелось одно новшество: магнитная стрелка, подвешенная на нити, вращалась над разграфленным сектором, а весь аппарат помещался под стеклянным колпаком.

Вначале казалось, что мультипликатор представляет собой предельно чувствительный гальванометр, но вскоре обнаружили, что его можно значительно улучшить. Уже в 1821 г. Ампер сконструировал «астатический аппарат», как он его назвал, подобный тому, который применял Вассалли Эанди, а еще раньше, в 1797 г., Джон Тремери. Прибор состоял из двух параллельных жестко связанных магнитных стрелок с полюсами, направленными в противоположные стороны. Вся система подвешивалась на острие, и можно было наблюдать, как она поворачивалась при пропускании электрического тока через параллельный проводник, расположенный очень близко к нижней стрелке. Таким способом Ампер доказал, что магнитная стрелка, когда она не подвержена магнитному влиянию Земли, располагается перпендикулярно току.

Леопольдо Нобили (1784-1835) пришла удачная мысль сочетать астатический аппарат Ампера с подвеской на нити, как у Авогадро и Микелотти; таким образом он пришел к своему известному астатическому гальванометру, первое описание которого он представил на заседании Моденской Академии наук 13 мая 1825 г. Чтобы дать представление о чувствительности этого инструмента, Нобили замечает, что, если соединить концы провода гальванометра железной проволокой, достаточно согреть один из стыков пальцами, чтобы стрелка отклонилась на 90°.

Гальванометр Нобили в течение нескольких десятилетий оставался самым чувствительным измерительным прибором в физических лабораториях, и мы уже видели, какую ценную помощью он оказал Меллони в его исследованиях. В 1828 г. Эрстед решил улучшить его, применив вспомогательный подковообразный магнит. Эта попытка успехом не увенчалась, но о ней все же следует упомянуть как о первом приборе с вспомогательным полем.

Эти измерительные приборы были значительно усовершенствованы лишь в 1837 г. Возможно, Пуйе и сам не знал точно теории действия своего инструмента, которая была дана в 1840 г. Вильгельмом Вебером (1804-1891). В 1837 г. А. С. Беккерель изобрел «электромагнитные весы», получившие распространение лишь во второй половине столетия. Затем появились другие типы: Гельмгольца (1849 г.), Гогэна (1853 г.), Кольрауша (1882 г.). Тем временем Поггендорф с 1826 г. ввел метод зеркального отсчета, развитый затем Гауссом (1832 г.) и примененный в зеркальном гальванометре Вебером в 1846 г.

С большим энтузиазмом был принят гальванометр, изобретенный в 1886 г. Д"Арсонвалем (1851-1940), в котором, как известно, измеряемый ток проходит через легкую подвижную катушку, помещенную в магнитном поле.

Билеты по физике

Сила тока, напряжение, сопротивление.

1. Создавать электрическое поле, в котором будут двигаться заряженные частицы, то есть возникнет ток.

2. Электрофорная машина, термоэлемент, гальванический элемент или аккумулятор.

3. А) при работе гальванического элемента в стандартных условиях происходит процессы превращения химической энергии реагентов в электрическую.

Б) Преобразование тепла в электрическую.

В) Происходит превращение механической энергии при трении в электрическую.

Г)Внутренняя энергия, выделяющаяся при химических реакциях, превращается в электрическую.В процессе зарядки в результате химических реакций один электрод становится положительно заряженным, а другой – отрицательно.

4. Основное различие состоит в том, что Аккумулятор можно заряжать вновь. Причем количество циклов заряда/разряда может достигать нескольких тысяч раз. Гальванический элемент имеет только один цикл разряда.

5. Простейший аккумулятор состоит из двух свинцовых пластин (электродов), помещённых в раствор серной кислоты.

6. При зарядке положительный полюс аккумулятора соединяют с положительным полюсом источника тока, отрицательный – с отрицательным полюсом.

7. Любой гальванический элементсостоитиз анода, катода и электролита твердого, жидкого или гелеобразного.

8. Источник тока, соединительные провода, ключ, потребитель.

10.Тепловое действие тока.

Электрический ток вызывает разогревание металлических проводников (вплоть до свечения).

Химическое действие тока.

При прохождении электрического тока через электролит возможно выделение веществ,
содержащихся в растворе, на электродах..
- наблюдается в жидких проводниках.

Магнитное действие тока.

Проводник с током приобретает магнитные свойства.
- наблюдается при наличии электрического тока в любых проводниках (твердых, жидких, газообразных).

11.______________________________________________________________________________________________________________________________________________________________________________________________________________________________

12.За направление тока условно приняли то направление, по которому движутся в проводнике положительные заряды, т.е. направление от положительного полюса источника тока к отрицательному.

13.Электрический ток – это упорядоченное движение заряженных частиц.

14.Для создания эл. тока необходимо эл. поле, которое распространяется со скоростью света от источника тока при замыкании цепи.

15.________________________________________________________________________ В металлах – электроны, в электролитах – ионы, в газах – молекулы.

16.сила тока – это эл. Заряд проходящий через поперечное сечение проводника за 1 сек.

17. - сила тока (А)

18. ;

19. q(-e)= -1.6*10^-19 Кулон

20.Силу тока в цепи измеряют прибором, называемым амперметром .

22.Напряжение это физическая величина, характеризующая электрическое поле. Оно обозначается буквой U. Единица напряжения названо вольтом (В) .

23. У амперметра очень малое внутреннее сопротивление поэтому при параллельном его включении в цепь весь ток "ринется" через него и он сгорит.

24. Вольтметр имеет большое внутреннее сопротивление, поэтому он ток почти не проведет. Даже если и проведет через себя ток, то сильно ослабляет его.

25.Сопротивление проводника зависит от его длины, от удельного сопротивления и от площади его поперечного сечения.

26.За единицу сопротивления принимают 1 ом - сопротивление такого проводника в котором при напряжении на концах 1 вольт сила тока равна 1 амперу.

27. ;
где R-сопротивление, p-удельное сопротивление проводника, l- длина проводника.

28. Это означает что сопротивление проводника () прямо пропорционально длине проводника (м) , обратно пропорциональна площади его поперечного и зависит от вещ-ва проводника.

30. Ползунковый реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, виток к витку натянутой на стержень из изолирующего материала. Проволока покрыта слоем окалины, который специально получается при производстве.

34.Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

35.

37.При последовательном соединении сила тока в любых участках цепи одна и та же, т.е.

Общее сопротивление цепи при последовательном соединении равно сумме сопротивлений отдельных проводников:

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:

38.Напряжение на участке цепи АВ и на концах всех параллельно соединённых проводников одно и то же:

Сила тока в неразветвлённой части цепи равна сумме сил токов в отдельных параллельно соединённых проводниках:

Общее сопротивление цепи при параллельном соединении проводников определяется по формуле:

39.Потому что если сгорит одна из проводок то все остальные будут продолжать работать.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08

Электрический ток в цепи всегда проявляется каким-нибудь своим действием. Это может быть как работа в определенной нагрузке, так и сопутствующее действие тока. Таким образом, по действию тока можно судить о его наличии или отсутствии в данной цепи: если нагрузка работает - ток есть. Если типичное сопутствующее току явление наблюдается - ток в цепи есть, и т. д.

Вообще, электрический ток способен вызывать различные действия: тепловое, химическое, магнитное (электромагнитное), световое или механическое, причем разного рода действия тока зачастую проявляются одновременно. Об этих явлениях и действиях тока и пойдет речь в данной статье.

Тепловое действие электрического тока

При прохождении постоянного или переменного электрического тока по проводнику, проводник нагревается. Такими нагревающимися проводниками в разных условиях и приложениях могут выступать: металлы, электролиты, плазма, расплавы металлов, полупроводники, полуметаллы.


В простейшем случае, если, скажем, через нихромовую проволоку пропустить электрический ток, то она нагреется. Данное явление используется в нагревательных приборах: в электрочайниках, в кипятильниках, в обогревателях, электроплитках и т. д. В электродуговой сварке температура электрической дуги вообще доходит до 7000°С, и металл легко плавится, - это тоже тепловое действие тока.

Выделяемое на участке цепи количество теплоты зависит от приложенного к этому участку напряжения, значения протекающего тока и от времени его протекания ().

Преобразовав закон Ома для участка цепи, можно для вычисления количества теплоты использовать либо напряжение, либо силу тока, но тогда обязательно необходимо знать и сопротивление цепи, ведь именно оно ограничивает ток, и вызывает, по сути, нагрев. Или, зная ток и напряжение в цепи, можно так же легко найти количество выделяемой теплоты.

Химическое действие электрического тока

Электролиты, содержащие ионы, под действием постоянного электрического тока - это и есть химическое действие тока. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) - положительные ионы (катионы). То есть вещества, содержащиеся в электролите, в процессе электролиза выделяются на электродах источника тока.

Например, в раствор определенной кислоты, щелочи или соли погружают пару электродов, и при пропускании электрического тока по цепи на одном электроде создается положительный заряд, на другом - отрицательный. Ионы содержащиеся в растворе начинают откладываться на электроде с противоположным зарядом.

Скажем, при электролизе медного купороса (CuSO4), катионы меди Cu2+ с положительным зарядом движутся к отрицательно заряженному катоду, где они получают недостающий заряд, и становятся нейтральными атомами меди, оседая на поверхности электрода. Гидроксильная группа -OH отдаст электроны на аноде, и в результате выделится кислород. Положительно заряженные катионы водорода H+ и отрицательно заряженные анионы SO42- останутся в растворе.

Химическое действие электрического тока используется в промышленности, например, для разложения воды на составляющие ее части (водород и кислород). Также электролиз позволяет получать некоторые металлы в чистом виде. С помощью электролиза покрывают тонким слоем определенного металла (никеля, хрома) поверхности - это и т.д.

В 1832 году Майкл Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит. Если через электролит пропускается в течение времени t постоянный ток I, то справедлив первый закон электролиза Фарадея:

Здесь коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

При наличии электрического тока в любом проводнике (в твердом, жидком или газообразном) наблюдается магнитное поле вокруг проводника, то есть проводник с током приобретает магнитные свойства.

Так, если к проводнику, по которому течет ток, поднести магнит, например в виде магнитной стрелки компаса, то стрелка повернется перпендикулярно проводнику, а если намотать проводник на железный сердечник, и пропустить по проводнику постоянный ток, то сердечник станет электромагнитом.

В 1820 году Эрстед открыл магнитное действие тока на магнитную стрелку, а Ампер установил количественные закономерности магнитного взаимодействия проводников с током.


Магнитное поле всегда порождается током, то есть движущимися электрическими зарядами, в частности - заряженными частицами (электронами, ионами). Противоположно направленные токи взаимно отталкиваются, однонаправленные токи взаимно притягиваются.

Такое механическое взаимодействие происходит благодаря взаимодействию магнитных полей токов, то есть это, в первую очередь, - магнитное взаимодействие, а уж потом - механическое. Таким образом, магнитное взаимодействие токов первично.

В 1831 году, Фарадей установил, что изменяющееся магнитное поле от одного контура порождает ток в другом контуре: генерируемая ЭДС пропорциональна скорости изменения магнитного потока. Логично, что именно магнитное действие токов используется по сей день и во всех трансформаторах, а не только в электромагнитах (например, в промышленных).

В простейшем виде световое действие электрического тока можно наблюдать в лампе накаливания, спираль которой разогревается проходящим через нее током до белого каления и излучает свет.

Для лампы накаливания на световую энергию приходится около 5% от подведенной электроэнергии, остальные 95% которой преобразуется в тепло.

Люминесцентные лампы более эффективно преобразуют энергию тока в свет - до 20% электроэнергии преобразуется в видимый свет благодаря люминофору, принимающему от электрического разряда в парах ртути или в инертном газе типа неона.


Более эффективно световое действие электрического тока реализуется в светодиодах. При пропускании электрического тока через p-n переход в прямом направлении, носители заряда - электроны и дырки - рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Лучшие излучатели света относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), например GaAs, InP, ZnSe или CdTe. Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). КПД светодиода как источника света доходит в среднем до 50%.

Как было отмечено выше, каждый проводник, по которому течет электрический ток, образует вокруг себя . Магнитные действия превращаются в движение, например, в электродвигателях, в магнитных подъемных устройствах, в магнитных вентилях, в реле и т. д.


Механическое действие одного тока на другой описывает закон Ампера. Впервые этот закон был установлен Андре Мари Ампером в 1820 для постоянного тока. Из следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных - отталкиваются.

Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна току в проводнике и векторному произведению элемента длины проводника на магнитную индукцию.

На этом принципе основана , где ротор играет роль рамки с током, ориентирующейся во внешнем магнитном поле статора вращающим моментом M.

О причинах возникновения и природе магнитно-силовых линий (МСЛ), возникающих вблизи постоянных магнитов и проводников с током. В предыдущей статье я высказал гипотезу, о том, что магнитное поле вблизи постоянного магнита или проводника с током представляет собой интерференционную картину из МСЛ различной интенсивности. В термин МСЛ я вкладываю определенный физический смысл. Это не просто геометрические линии, а часть сложной структуры магнитного поля, состоящая, в свою очередь, из микроскопических волн, обладающих магнитными свойствами. При воздействии магнитного поля постоянного магнита на кусок железа или на железные опилки это поле является внешним (ВМП), по отношению к куску железа или железным опилкам. ВМП вначале индуцирует собственное магнитное поле (СМП) в куске железа или в железных опилках, а затем уже взаимодействует с этим СМП, посредством их МСЛ.

Аналогично это касается и проводников с током. Пока в проводниках замкнутой цепи есть ток (а значит, есть СМП вокруг проводников), ВМП взаимодействует с СМП проводников посредством их МСЛ. Когда в проводнике нет тока, а значит, и нет МСЛ вокруг проводника, ВМП не действует на сам проводник, хотя его МСЛ пронизывают микроструктуру проводника.

В этой статье поговорим о взаимодействии магнитов и проводников с током посредством МСЛ.

Вспомним, что известно об этом из научных публикаций. Как уже было сказано ранее, Г.Эрстед в 1820 году экспериментально продемонстрировал взаимодействие магнита и проводника с током. Поведение магнитной стрелки вблизи проводника с постоянным током говорило о том, что вокруг этого проводника находится магнитное поле. Впоследствии была установлена тесная связь магнитного поля с током. Обобщая свои опыты, Эрстед показал, что наличие тока в проводниках замкнутой цепи, какова бы не была их природа, всегда влечет за собой образование МСЛ магнитного поля вокруг проводников этой цепи. Именно взаимодействие МСЛ проводника с МСЛ магнитной стрелки заставляет ее поворачиваться одним из своих полюсов к проводнику с током.

В 1821 году французский ученый А.Ампер установил взаимосвязь электричества и магнетизма в случае прохождения по цепи электрического тока и отсутствия такой взаимосвязи у статического электричества.

Чтобы проверить является ли указанное взаимодействие МСЛ обоюдным, т.е. действует ли магнит на проводник с током, был проведен следующий опыт (рис.1). Над неподвижным постоянным магнитом подвешивали проводник с постоянным током. Оказалось, что проводник с током ведет себя аналогично магнитной стрелке.

Интересен опыт с гибким проводником, который расположен в непосредственной близости к параллельно полосовому магниту. Когда в проводнике появлялся ток, то он обвивался вокруг полосового магнита (рис.2). Это говорило о том, что вокруг каждого участка проводника с током появляются МСЛ, которые взаимодействуют с МСЛ полосового магнита.

Такой же вывод был сделан и Д.Араго, который в своем опыте обратил внимание на то, что если погрузить изолированный провод, по которому идет ток, в металлические опилки, то опилки пристают к нему по всей длине как к магниту. При выключении тока опилки отпадают.

Аналогичные взаимодействия были установлены между двумя, находящимися вблизи друг от друга, проводниками с постоянным током. В опыте (рис.3) два параллельных проводника установлены на небольшом расстоянии друг от друга. Эти проводники притягивались или отталкивались в зависимости от его направления. В этих и других опытах было показано, что магнитное действие электрического тока аналогично взаимодействию двух магнитов.

Рассмотренные нами опыты по взаимодействию магнитных полей показывают, что все взаимодействия и в случае с постоянными магнитами, и между постоянными магнитами и проводниками с током, а также двумя проводниками с током между собой сводятся к взаимодействию магнитных полей посредством их МСЛ. С учетом того, что на практике большое количество технических устройств создано на основе взаимодействия магнитных полей, в частности, на основе взаимодействия магнитных полей и проводников с током, следует привести некоторые опыты, которые понадобятся нам позднее для объяснения некоторых явлений в этой области.

Рассмотрим следующий опыт по взаимодействию магнитного поля и проводника с током. В магнитном поле подковообразного магнита расположен прямолинейный участок проводника с током. (рис.4). Изменяя направление тока в проводнике, и меняя его расположение относительно направления магнитного поля можно определить направление силы, действующей на проводник. При включении тока (в зависимости от его направления) проводник может втягиваться в магнит или выталкиваться из магнита. При этом магнитное поле действует на проводник с током только тогда, когда он расположен перпендикулярно направлению МСЛ поля. При параллельном расположении проводника и МСЛ поля взаимодействия не происходит.

Сила, действующая на проводник с током в магнитном поле, определяется из соотношения:

F= k*H*I*L*sina,

где H- напряженность магнитного поля, I-сила тока, L- длина прямолинейного участка проводника, а- угол между H и I.

Это соотношение носит название закона Ампера. На практике в большинстве случаев приходится иметь дело с проводниками различной формы, по которым протекает ток, и действие магнитного поля на такие проводники с током имеет довольно сложный характер. Посмотрим, как магнитное поле действует на простые формы проводников с током в виде витка или соленоида.

Виток с током, как показали опыты, подобен плоскому магниту, полюса которого (северный и южный) находятся на противоположных плоскостях витка. Полюса перпендикулярны к плоскостям витка с током. Определить какой из этих полюсов северный, а какой южный можно по правилу буравчика. Северный полюс витка с током определяется по направлению его рукоятки вращения – аналогия направления МСЛ. Если ввинчивать буравчик по направлению тока, то выходящие из плоскости витка МСЛ укажут на северный полюс. Магнитные полюса соленоида определяют таким же образом.

Внешнее магнитное поле, воздействуя на виток с током, стремится повернуть его так, чтобы МСЛ витка были параллельны МСЛ внешнего магнитного поля. Для анализа сил, действующих на виток с током, удобно сделать его прямоугольной формы. В этом случае, предположим, что две стороны витка параллельны направлению магнитного поля, а две другие перпендикулярны (рис.5). На первые две стороны витка магнитное поле не действует, а на две другие стороны витка действуют равные и противоположные магнитные силы, создаваемые противоположным направлением тока. Эти силы образуют вращающий момент, поворачивающий виток с током плоскостью перпендикулярно к направлению магнитного поля. На две другие стороны витка магнитное поле действует двумя равными, но противоположно направленными силами, которые стремятся деформировать (сжать или растянуть) виток в зависимости от направления тока.

На основании результатов приведенных и других опытов можно сделать следующие выводы.

Магнитное поле действует на прямолинейный участок проводника с током с силой, направление которой перпендикулярно к направлению тока и направлению МСЛ магнитного поля;

Магнитное поле создает вращающий момент, который стремится повернуть виток или соленоид так, чтобы направление от южного полюса витка или соленоида к северному полюсу совпало с направлением поля;

Магнитное поле не действует на проводники с током, расположенные вдоль направления МСЛ;

МСЛ это не просто геометрические линии, а часть сложной структуры магнитного поля, состоящая, в свою очередь, из микроскопических волн, обладающих магнитными свойствами.

О природе и особенностях этих и других сил мы поговорим в следующей статье.

Возможное существование тесной связи между элек­тричеством и магнетизмом предполагали уже самые первые исследователи, пораженные аналогией электростатических и магнитостатических явлений притяжения и отталкивания. Это представление было настолько распро­странено, что сначала Кардан, а затем и Гильберт считали его предрассудком и всячески старались показать различие этих двух явлений. Но это предполо­жение снова возникло в XVIII в. уже с большим основанием, когда было установлено намагничивающее действие молнии, а Франклину и Беккариа удалось добиться намагничивания с помощью разряда лейденской банки. Законы Кулона, формально одинаковые для электростатических и магнитостатических явлений, вновь выдвинули эту проблему.

После того как благодаря батарее Вольта появилась возможность полу­чать электрический ток в течение долгого времени, попытки обнаружить связь между электрическими и магнитными явлениями стали более частыми и более интенсивными. И все же, несмотря на интенсивные поиски, открытие заставило себя ждать целых двадцать лет. Причины такой задержки следует искать в научных представлениях, господствовавших в те времена. Все силы понимались только в ньютоновском смысле, т.е. как силы, которые действуют между материальными частицами по соединяющей их прямой. Поэтому исследователи старались обнаружить силы именно этого рода, создавая при­способления, с помощью которых они надеялись обнаружить предполагаемое притяжение или отталкивание между магнитным полюсом и электрическим током (или, выражаясь более общим образом, между «гальваническим» флюи­дом и магнитным флюидом) или же пытались намагнитить стальную иглу, направляя по ней ток.

Когда 21 июля 1820 г. в статье на латинском языке, озаглавленной “Experimenta circa effectum conflictus electrici in acum magneticam”, датский физик Ганс Христиан Эрстед (1777 – 1851) описал фундаментальный опыт по электромагнетизму, доказывающий, что ток в прямолинейном проводнике, идущем вдоль меридиана, отклоняет магнитную иглу от направления меридиана, интерес и удивление ученых были велики не только потому, что было получено столь долго разыскивавшееся разрешение проблемы, но и потому, что новый опыт, как сразу же стало ясно, указывал на силу неньютоновского типа. В самом деле, из опыта Эрстеда ясно было видно, что сила, действую­щая между магнитным полюсом и элементом тока, направлена не по соеди­няющей их прямой, а по нормали к этой прямой, т.е. она, как тогда говори­ли, является «силой поворачивающей». Значение этого факта чувствовалось уже тогда, хотя полностью оно было осознано лишь много лет спустя. Опыт Эрстеда вызвал первую трещину в ньютоновской модели мира.

О том затруднении, в которое попала наука, можно судить, например, по замешательству, в котором находились итальянские, французские, англий­ские и немецкие переводчики, переводившие на родной язык латинскую статью Эрстеда. Часто, сделав буквальный перевод, представлявшийся им неясным, они приводили в примечании латинский оригинал.

Действительно неясным в статье Эрстеда еще и сегодня остается объяс­нение, которое он пытается дать наблюдавшимся им явлениям, обусловлен­ным, по его мнению, двумя противоположно направленными спиральными движениями вокруг проводника «электрической материи, соот­ветственно положительной и отрицательной».

Исключительность явления, открытого Эрстедом, сразу же привлекла к нему большое вни­мание экспериментаторов и тео­ретиков. Араго, вернувшись из Женевы, где он присутствовал при аналогичных опытах, по­вторенных Де ла Ривом, рас­сказал о них в Париже, а в сен­тябре 1820 г. собрал свою известную установку с вертикальным проводником тока, проходящим сквозь горизонтально распо­ложенный кусок картона, посыпанный железными опилками. Но окружно­стей из железных опилок, которые мы обычно замечаем при проведении этого опыта, он не обнаружил. Экспериментаторы видят ясно эти окружности с тех пор, как Фарадей выдвинул теорию «магнитных кривых», или «сило­вых линий». Действительно, нередко, чтобы увидеть что-то, нужно очень желать этого! Араго же видел только, что проводник, по его выражению, «облепливается железными опилками так, как если б это был магнит», из чего он сделал заключение, что «ток вызывает магнетизм в железе, которое не подвергалось предварительному намагничиванию».