Карбоновые кислоты. Карбоновые кислоты и их химические свойства Муравьиная кислота и хлор

Способы получения . 1 . Окисление альдегидов и первичных спиртов - общий способ получения карбоновых кислот. В ка­честве окислителей применяются />K М n О 4 и K 2 С r 2 О 7 .

2 Другой общий способ - гидролиз галогензамещенных угле­водородов, содержащих, три атома галогена у одного атома уг­лерода. При этом образуются спирты, содержащие группы ОН у одного атома углерода - такие спирты неустойчивы и отщепля­ют воду с образованием карбоновой кислоты:/>

ЗNаОН
R-CCl 3 R — COOH + Н 2 О
-3NaCl

3 . Получение карбоновых кислот из цианидов (нитрилов) - это важный способ, позволяющий наращивать углеродную цепь при получении исходного цианида. Дополнительный атом угле­рода вводят в состав молекулы, используя реакцию замещения галогена в молекуле галогенуглеводорода цианидом натрия, например:/>

СН 3 -В r + NaCN → CH 3 — CN + NaBr .

Образующийся нитрил уксусной кислоты (метилцианид) при на­гревании легко гидролизуется с образованием ацетата аммония:

CH 3 CN + 2Н 2 О → CH 3 COONH 4 .

При подкислении раствора выделяется кислота:

CH 3 COONH 4 + HCl → СН 3 СООН + NH 4 Cl .

4 . Использование реактива Гриньяра по схеме:/>

Н 2 О
R — MgBr + СО 2 → R — COO — MgBr → R — COOH + Mg (OH ) Br

5 . Гидролиз сложных эфиров:/>

R — COOR 1 + КОН → R — COOK + R ‘ OH ,

R — COOK + HCl R COOH + KCl .

6 . Гидролиз ангидридов кислот:/>

(RCO ) 2 O + Н 2 О → 2 RCOOH .

7 . Для отдельных кислот существуют специфические спосо­бы получения./>

Муравьиную кислоту получают нагреванием оксида углерода (II ) с порошкообразным гидроксидом натрия под давлением и об­работкой полученного формиата натрия сильной кислотой:

Уксусную кислоту получают каталитическим окислением бу­тана кислородом воздуха:

2С 4 Н 10 + 5 O 2 → 4СН 3 СООН + 2Н 2 О.

Для получения бензойной кислоты можно использовать окис­ление монозамешенных гомологов бензола кислым раствором перманганата калия:

5С 6 Н 5 -СН 3 + 6 KMnO 4 + 9 H 2 SO 4 = 5С 6 Н 5 СООН + 3 K 2 SO 4 + 6 MnSO 4 + 14 H 2 O .

Кроме того, бензойную кислоту можно получить из бензальдегида с помощью реакции Канниццаро . В этой реакции бензальдегид обрабатывают 40-60%-ным раствором гидроксида натрия при комнатной температуре. Одновременное окисление и восстано­вление приводит к образованию бензойной кислоты и соответ­ственно фенилметанола (бензилового спирта):

Химические свойства . Карбоновые кислоты - более силь­ные кислоты, чем спирты, поскольку атом водорода в карбок­сильной группе обладает повышенной подвижностью благодаря влиянию группы СО. В водном растворе карбоновые кислоты диссоциируют:/>

RCOOH RCOO — + Н +

Тем не менее из-за ковалентного характера молекул карбоно­вых кислот указанное выше равновесие диссоциации достаточно сильно сдвинуто влево. Таким образом, карбоновые кислоты - это, как правило, слабые кислоты. Например, этановая (уксусная) кислота характеризуется константой диссоциации К а = 1,7*10 -5 . />

Заместители, присутствующие в молекуле карбоновой кисло­ты, сильно влияют на ее кислотность вследствие оказываемого ими индуктивного эффекта . Такие заместители, как хлор или фенильный радикал оттягивают на себя электронную плотность и, следовательно, вызывают отрицательный индуктивный эффект (-/). Оттягивание электронной плотности от карбоксильного ато­ма водорода приводит к повышению кислотности карбоновой кислоты. В отличие от этого такие заместители, как алкильные группы, обладают электронодонорными свойствами и создают положительный индуктивный эффект, +I. Они понижают кислот­ность. Влияние заместителей на кислотность карбоновых кислот наглядно проявляется в значениях констант диссоциации K a для ряда кислот. Кроме того, на силу кислоты оказывает влияние наличие сопряженной кратной связи.

Карбоновые кислоты Формула K a

Пропионовая CH 3 CH 2 COOH 1,3*10 -5

Масляная CH 3 CH 2 CH 2 COOH 1,5*10 -5

Уксусная CH 3 COOH 1,7*10 -5

Кротоновая CH 3 — CH = CH — COOH 2,0*10 -5

Винилуксусная CH 2 =CH-CH 2 COOH 3,8*10 -5

Акриловая CH 2 =CH-COOH 5,6*10 -5

Муравьиная HCOOH 6,1*10 -4

Бензойная C 6 H 5 COOH 1,4*10 -4

Хлоруксусная CH 2 ClCOOH 2,2*10 -3

Тетроновая CH 3 — C ≡ C — COOH 1,3*10 -3

Дихлоруксусная CHCl 2 COOH 5,6*10 -2

Щавелевая HOOC — COOH 5,9*10 -2

Трихлоруксусная CCl 3 COOH 2,2*10 -1

Взаимное влияние атомов в молекулах дикарбоновых кислот приводит к тому, что они являются более сильными, чем одноос­новные.

2. Образование солей. Карбоновые кислоты обладают всеми свойствами обычных кислот. Они реагируют с активными метал­лами, основными оксидами, основаниями и солями слабых кис­лот:

2 RCOOH + М g → (RCOO ) 2 Mg + Н 2 ,

2 RCOOH + СаО → (RCOO ) 2 Ca + Н 2 О,

RCOOH + NaOH RCOONa + Н 2 О,

RCOOH + NaHCO 3 → RCOONa + Н 2 О + СО 2 .

Карбоновые кислоты - слабые, поэтому сильные минераль­ные кислоты вытесняют их из соответствующих солей:

CH 3 COONa + HCl → СН 3 СООН + NaCl .

Соли карбоновых кислот в водных растворах гидролизованы:

СН 3 СООК + Н 2 О СН 3 СООН + КОН.

Отличие карбоновых кислот от минеральных заключается в возможности образования ряда функциональных производных.

3 . Образование функциональных производных карбоновых кис­лот. При замещении группы ОН в карбоновых кислотах различ­ными группами (/>X ) образуются функциональные производные кислот, имеющие общую формулу R -СО- X ; здесь R означает алкильную либо арильную группу. Хотя нитрилы имеют другую общую формулу (R - CN ), обычно их также рас­сматривают как производные карбоновых кислот, поскольку они могут быть получены из этих кислот.

Хлорангидриды получают действием хлорида фосфора (V ) на кислоты:

R-CO-OH + РС l 5 → R-CO-Cl + РОС l 3 + HCl .

Соединение примеры

Кислота

Этановая(уксусная) Бензойная кислота

хлорангидрит кислоты

Этаноилхлорид Бензоилхлорид

(ацетилхлорид)

ангидрид кислоты

Этановый(уксусный) бензойный ангидрит

Ангидрит

сложый эфир

Этилэтаноат(этилацетат) Метилбензоат

амид

Этанамид(ацетамид) Бензамид

Нитрил

Этаннитрил Бензонитрил

(ацетонитрил)

Ангидриды образуются из карбоновых кислот при действии водоотнимающих средств:

2 R — CO — OH + Р 2 О 5 → (R — CO -) 2 O + 2НРО 3 .

Сложные эфиры образуются при нагревании кислоты со спир­том в присутствии серной кислоты (обратимая реакция этерификации):

Механизм реакции этерификации был установлен методом "меченых атомов".

Сложные эфиры можно также получить при взаимодействии хлорангидридов кислот и алкоголятов щелочных металлов:

R-CO-Cl + Na-O-R’ → R-CO-OR’ + NaCl .

Реакции хлорангидридов карбоновых кислот с аммиаком при­водят к образованию амидов :

СН 3 -СО-С l + CН 3 → СН 3 -СО-CН 2 + HCl .

Кроме того, амиды могут быть получены при нагревании ам­монийных солей карбоновых кислот:

При нагревании амидов в присутствии водоотнимающих средств они дегидратируются с образованием нитрилов :

Р 2 0 5
CH 3 — CO — NH 2

CH 3 — C ≡ N + Н 2 О

Функциональные производные низших кислот — летучие жидкости. Все они легко гидролизуются с образованием исходной кислоты:

R-CO-X + Н 2 О →R-CO-OH + НХ .

В кислой среде эти реакции могут быть обратимы. Гидролиз в щелочной среде необратим и приводит к образованию солей кар­боновых кислот, например:

R-CO-OR ‘ + NaOH → R-CO-ONa + R’OH.

4 . Ряд свойств карбоновых кислот обусловлен наличием угле­водородного радикала. Так, при действии галогенов на кислоты в присутствии красного фосфора образуются галогензамещенные кислоты, причем на галоген замещается атом водорода при со­седнем с карбоксильной группой атоме углерода (а-атоме):/>

р кр

СН 3 -СН 2 -СООН + Вr 2

СН 3 -СНВr-СООН + НВr

Непредельные карбоновые кислоты способны к реакциям при­соединения:

СН 2 =СН-СООН + Н 2 → СН 3 -СН 2 -СООН,

СН 2 =СН-СООН + С l 2 → СН 2 С l -СНС l -СООН,

СН 2 =СН-СООН + HCl → СН 2 С l -СН 2 -СООН,

СН 2 =СН-СООН + Н 2 O → НО-СН 2 -СН 2 -СООН,

Две последние реакции протекают против правила Марковникова.

Непредельные карбоновые кислоты и их производные способ­ны к реакциям полимеризации .

5 . Окислительно-восстановительные реакции карбоновых кислот./>

Карбоновые кислоты при действии восстановителей в при­сутствии катализаторов способны превращаться в альдегиды, спирты и даже углеводороды:

Муравьиная кислота НСООН отличается рядом особенностей, поскольку в ее составе есть альдегидная группа:

Муравьиная кислота - сильный восстановитель и легко окис­ляется до СО 2 . Она дает реакцию "серебряного зеркала" :

НСООН + 2OH 2Ag + (NH 4) 2 CO 3 + 2NH 3 + H 2 O,

или в упрощенном виде:

C Н 3 НСООН + Аg 2 О → 2Аg + СО 2 + Н 2 О.

Кроме того, муравьиная кислота окисляется хлором:

НСООН + Сl 2 → СО 2 + 2 HCl .

В атмосфере кислорода карбоновые кислоты окисляются до СО 2 и Н 2 О:

СН 3 СООН + 2О 2 → 2СО 2 + 2Н 2 О.

6 . Реакции декарбоксширования . Насыщенные незамещенные монокарбоновые кислоты из-за большой прочности связи С-С при нагревании декарбоксилируются с трудом. Для этого необхо­димо сплавление соли щелочного металла карбоновой кислоты со щелочью:/>

Появление электронодонорных заместителей в углеводород­ном радикале способствует реакции декарбоксилирования :

Двухосновные карбоновые кислоты легко отщепляют СО 2 при нагревании:

В табл. 19.10 указаны некоторые органические соединения, относящиеся к карбоновым кислотам. Характерный признак карбоновых кислот - наличие в них карбоксильной

Таблица 19.10. Карбоновые кислоты

(см. скан)

функциональной группы. Карбоксильная группа состоит из карбонильной группы, связанной с гидроксильной группой. Органические кислоты с одной карбоксильной группой называются монокарбоновыми кислотами. Их систематические названия имеют суффикс -ов(ая). Органические кислоты с двумя карбоксильными группами называются дикарбоновыми кислотами. Их систематические названия имеют суффикс -диов(ая).

Насыщенные алифатические монокарбоновые кислоты образуют гомологический ряд, который характеризуется общей формулой . Ненасыщенные алифатические дикарбоновые кислоты могут существовать в форме различных геометрических изомеров (см. разд. 17.2).

Физические свойства

Низшие члены гомологического ряда насыщенных монокарбоновых кислот при нормальных условиях представляют собой жидкости, обладающие характерным острым запахом. Например, этановая (уксусная) кислота имеет характерный «уксусный» запах. Безводная уксусная кислота при комнатной температуре представляет собой жидкость. Она замерзает при превращаясь в льдистое вещество, которое называется ледяной уксусной кислотой.

Все дикарбоновые кислоты, указанные в табл. 19.10, при комнатной температуре представляют собой белые кристаллические вещества. Низшие члены рядов монокарбоновых и дикарбоновых кислот растворимы в воде. Растворимость карбоновых Кислот уменьшается по мере возрастания их относительной молекулярной массы.

В жидком состоянии и в неводных растворах молекулы монокарбоновых кислот димеризуются в результате образования между ними водородных связей:

Водородная связь в карбоновых кислотах сильнее, чем в спиртах. Это объясняется высокой полярностью карбоксильной группы, обусловленной оттягиванием электронов от атома водорода по направлению к карбонильному атому кислорода:

Вследствие этого карбоновые кислоты имеют сравнительно высокие температуры кипения (табл. 19.11).

Таблица 19.11. Температуры кипения уксусной кислоты и спиртов с близкими значениями относительной молекулярной массы

Лабораторные методы получения

Монокарбоновые кислоты можно получать из первичных спиртов и альдегидов окислением с помощью подкисленного раствора бихромата калия, взятого в избыточном количестве:

Монокарбоновые кислоты и их соли можно получать гидролизом нитрилов либо амидов:

Получение карбоновых кислот по реакции с реактивами Гриньяра и диоксидом углерода описано в разд. 19.1.

Бензойную кислоту можно получить окислением метильной боковой цепи метилбензола (см. разд. 18.2).

Кроме того, бензойную кислоту можно получить из бензальдегида с помощью реакции Каннищаро. В этой реакции бензальдегид обрабатывают 40-60%-ным раствором гидроксида натрия при комнатной температуре. Одновременное окисление и восстановление приводит к образованию бензойной кислоты и соответственно фенил-метанола:

Окисление

Реакция Канниццаро характерна для альдегидов, не имеющих -атомов водорода. Так называются атомы водорода, присоединенные к атому углерода, соседнему с альдегидной группой:

Поскольку метаналь не имеет -атомов водорода, он может вступать в реакцию Канниццаро. Альдегиды, содержащие по крайней мере один -атом водорода, в присутствии раствора гидроксида натрия подвергаются кислотнокатализируемой альдольной конденсации (см. выше).

Химические свойства

Хотя карбоксильная группа содержит карбонильную группу, карбоновые кислоты не вступают в некоторые реакции, характерные для альдегидов и кетонов. Например, они не вступают в реакции присоединения или конденсации. Это объясняется тем, что атом

углерода в карбоксильной группе имеет меньший положительный заряд, чем в альдегидной или кетогруппе.

Кислотность. Оттягивание электронной плотности от карбоксильного атома водорода ослабляет связь О-Н. Вследствие этого карбоксильная группа способна отщеплять (терять) протон. Поэтому монокарбоновые кислоты ведут себя как одноосновные кислоты. В водных растворах этих кислот устанавливается следующее равновесие:

Карбоксилат-ион может рассматриваться как гибрид двух резонансных структур:

Иначе его можно представлять себе как

Делокализация электрона между атомами карбоксилатной группы стабилизирует карбоксилат-ион. Поэтому карбоновые кислоты обладают намного большей кислотностью, чем спирты. Тем не менее из-за ковалентного характера молекул карбоновых кислот указанное выше равновесие сильно сдвинуто влево. Таким образом, карбоновые кислоты - это слабые кислоты. Например, этановая (уксусная) кислота характеризуется константой кислотности

Заместители, присутствующие в молекуле карбоновой кислоты, сильно влияют на ее кислотность вследствие оказываемого ими индуктивного эффекта. Такие заместители, как хлор, оттягивают на себя электронную плотность и, следовательно, вызывают отрицательный индуктивный эффект Оттягивание электронной плотности от карбоксильного атома водорода приводит к повышению кислотности карбоновой кислоты. В отличие от этого такие заместители, как алкильные группы, обладают электронодонорными свойствами и создают положительный индуктивный эффект, Они ослабляют карбоновую кислоту:

Влияние заместителей на кислотность карбоновых кислот наглядно проявляется в значениях для ряда кислот, указанных в табл. 19.12.

Таблица 19.12. Значения карбоновых кислот

Образование солей. Карбоновые кислоты обладают всеми свойствами обычных кислот. Они вступают в реакции с реакционноспособными металлами, основаниями, щелочами, карбонатами и гидрокарбонатами, образуя соответствующие соли (табл. 19.13). Реакции, указанные в этой таблице, характерны и для растворимых и нерастворимых карбоновых кислот.

Подобно другим солям слабых кислот, карбоксилатные соли (соли карбоновых кислот) реагируют с минеральными кислотами, взятыми в избыточном количестве, образуя исходные карбоновые кислоты. Например, при добавлении раствора гидроксида натрия к взвеси нерастворимой бензойной кислоты в воде происходит растворение кислоты вследствие образования бензоата натрия. Если затем к полученному раствору добавить серную кислоту, происходит осаждение бензойной кислоты:

Таблица 19.13. Образование солей из карбоновых кислот

Этерификация. При нагревании смеси карбоновой кислоты со спиртом в присутствии концентрированной минеральной кислоты происходит образование сложного эфира. Такой процесс, называемый этерификацией, требует расщепления молекул спирта. При этом существуют две возможности.

1. Алкоксиводородное расщепление. В данном случае спиртовый атом кислорода (из гидроксильной группы) попадает в молекулу образующегося эфира:

2. Алкилгидроксилъное расщепление. При расщеплении такого типа спиртовый атом кислорода попадает в молекулу воды:

Какой из этих случаев реализуется конкретно, можно определить экспериментально, проводя этерификацию с использованием спирта, содержащего изотоп 180 (см. разд. 1.3), т.е. с использованием изотопной метки. Определение относительной молекулярной массы образующегося эфира с помощью масс-спектрометрии показывает, присутствует ли в нем изотопная метка-кислород-18. Таким способом обнаружено, что этерификация с участием первичных спиртов приводит к образованию меченых сложных эфиров:

Это показывает, что молекула метанола в ходе рассматриваемой реакции подвергается метокси-водородному расщеплению.

Галогенирование. Карбоновые кислоты реагируют с пентахлоридом фосфора и оксид-дихлоридом серы, образуя хлорангидриды соответствующих кислот. Например

И бензоилхлорид, и оксид-трихлорид фосфора представляют собой жидкости, которые необходимо отделить друг от друга. Поэтому для хлорирования карбоновых кислот удобнее использовать оксид-дихлорид серы: это позволяет легко удалить газообразные хлороводород и диоксид серы из жидкого хлорангидрида карбоновой кислоты:

При продувании хлора через кипящую уксусную кислоту в присутствии таких катализаторов, как красный фосфор либо иод, и под действием солнечного света

образуется монохлороэтановая (монохлороуксусная) кислота:

Дальнейшее хлорирование приводит к образованию дизамешенного и тризамещенного продуктов:

Восстановление. При взаимодействии с лития в сухом диэтиловом эфире карбоновые кислоты могут восстанавливаться до соответствующих спиртов. Сначала образуется алкоксидное промежуточное соединение, гидролиз которого приводит к образованию спирта:

Карбоновые кислоты не восстанавливаются многими обычными восстановителями. Эти кислоты не могут восстанавливаться сразу до соответствующих альдегидов.

Окисление. За исключением метановой (муравьиной) и этановой (уксусной) кислот, остальные карбоновые кислоты окисляются с трудом. Муравьиная кислота и ее соли (формиаты) окисляются перманганатом калия. Муравьиная кислота способна восстанавливать реактив Фелинга и при нагревании в смеси с водно-аммиачным раствором нитрата серебра образует «серебряное зеркало». При окислении муравьиной кислоты образуются диоксид углерода и вода:

Этандиовая (щавелевая) кислота тоже окисляется перманганатом калия, образуя диоксид углерода и воду:

Дегидратация. Перегонка карбоновой кислоты с каким-либо обезвоживателем, например оксидом приводит к отщеплению молекулы воды от двух молекул кислоты и образованию ангидрида карбоновой кислоты:

Муравьиная и щавелевая кислоты оказываются исключениями и в этом случае. Дегидратация муравьиной кислоты или ее калиевой либо натриевой соли с помощью концентрированной серной кислоты приводит к образованию моноксида углерода и

Дегидратация метаноата (формиата) натрия концентрированной серной кислотой представляет собой обычный лабораторный способ получения моноксида углерода. Дегидратация щавелевой кислоты горячей концентрированной серной кислотой приводит к образованию смеси моноксида углерода и диоксида углерода:

Карбоксилаты

Натриевые и калиевые соли карбоновых кислот представляют собой кристаллические вещества белого цвета. Они легко растворяются в воде, образуя сильные электролиты.

Электролиз натриевых или калиевых карбоксилатных солей, растворенных в водно-метанольной смеси, приводит к образованию алканов и диоксида углерода на аноде и водорода на катоде.

На аноде:

На катоде:

Такой метод получения алканов называется электрохимическим синтезом Кольбе.

Образование алканов происходит и при нагревании смеси карбоксилатов натрия или калия с гидроксидом натрия либо натронной известью. (Натронная известь - это смесь гидроксида натрия с гидроксидом кальция.) Такой способ используется, например, для получения метана в лабораторных условиях:

Ароматические карбоксилаты натрия или калия в аналогичных условиях образуют арены:

При нагревании смеси карбоксилатов натрия с хлорангидридами образуются ангидриды соответствующих карбоновых кислот:

Карбоксилаты кальция тоже представляют собой кристаллические вещества белого цвета и, как правило, растворимы в воде. При их нагревании происходит образование

ние с низким выходом соответствующих кетонов:

При нагревании смеси карбоксилатов кальция с формиатом кальция образуется альдегид:

Аммониевые соли карбоновых кислот тоже представляют собой белые кристаллические вещества, растворимые в воде. При сильном нагревании они образуют соответствующие амиды:

1. Карбоновые кислоты диссоциируют в водном растворе с отщеплением протонов Н + , обусловливающих кислую среду раствора:

Водные растворы карбоновых кислот изменяют окраску индикаторов и являются электролитами. По сравнению с сильными минеральными кислотами (H 2 SO 4 , HNO 3 , HCl) – это слабые кислоты.

2. Карбоновые кислоты реагируют с активными металлами (примерно от Li до Fe в ряду напряжений металлов), выделяя водород:

3. Кислоты реагируют с основными оксидами :

4. Кислоты реагируют с основаниями :

5. Кислоты реагируют с аммиаком на холоду с образованием солей аммония:

Соли аммония карбоновых кислот термически неустойчивые соединения, при нагревании они отщепляют воду и превращаются в амиды кислот :

При нагревании амидов с водоотнимающими средствами (например, с пентаоксидом фосфора Р 2 О 5) образуются нитрилы карбоновых кислот :

6. Карбоновые кислоты реагируют с солями более слабых и летучих кислот:

7. Кислоты RCOOH реагируют со спиртами R"OH (реакция этерификации) с образованием сложных эфиров RCOOR". Это обратимая реакция:

8. Кислоты реагируют с хлоридами фосфора РСl 3 , РСl 5 , а также с тионилхлоридом SOCl 2 , обменивая гидроксильную группу на атом хлора:

9. Вследствие электроноакцепторного влияния карбоксильной группы СООН атомы водорода при углероде в -положении довольно подвижные и могут замещаться на атомы хлора или брома:

Муравьиная кислота НСООН по химическим свойствам несколько отличается от других карбоновых кислот. Так, для нее неизвестны хлорангидрид и ангидрид. В присутствии водоотнимающих средств (PCl 5 , SOCl 2 , H 2 SO 4 (конц.)) муравьиная кислота отщепляет воду с выделением оксида углерода(II):

Из-за наличия в молекуле Н–СООН альдегидного протона муравьиная кислота легко окисляется, в частности дает реакцию «серебряного зеркала»:

Ангидриды карбоновых кислот RC(O)–O–C(O)R получают взаимодействием галогенангидридов с солями карбоновых кислот:

Задача. Для нейтрализации смеси двух соседних членов гомологического ряда двухосновных предельных карбоновых кислот потребовалось 333 мл раствора гидроксида бария с концентрацией 0,09 моль/л, при этом образовалась смесь солей общей массой 7,31 г. Определите, какие вещества входили в состав смеси и в каком количестве.

Решение

Запишем два уравнения реакций дикарбоновых кислот с гидроксидом бария в общем виде:

Здесь М 1 = а – молярная масса первой дикарбоновой кислоты и М 2 = а + 14 – молярная масса высшего гомолога (+СН 2) этой кислоты.
Молярные массы бариевых солей первой и второй кислот равны соответственно (г/моль):

М = а + 137 – 2 и М = а + 14 + 137 – 2.

Количество вещества низшего гомолога дикарбоновой кислоты обозначено х моль. Такие же количества вещества = х моль других участвующих в реакции (1) веществ – Ва(ОН) 2 и (СН 2) n (СОО) 2 Ва. Аналогично в реакции (2):

(НООС(СН 2) n +1 СООН) = (Ва(ОН) 2) = ((СН 2) n +1 (СОО) 2 Ва) = у моль.

Рассчитаем количество вещества гидроксида бария в объеме V = 333 мл (1/3 л) раствора с концентрацией c мол = 0,09 моль/л:

(Ва(ОН) 2) = c мол V = 0,09 1/3 = 0,03 моль.

Расход основания Ва(ОН) 2 в реакциях (1) и (2) равен:

х + у = 0,03 моль.

Откуда х = 0,03 – у .

В реакции (1) масса полученной соли:

m 1 = М = х (а + 135).

В реакции (2) масса образующейся соли:

m 2 = у (а + 149).

х (а + 135) + у (а + 149) = 7,31.

Подставляя х = 0,03 – у , решим это уравнение относительно у :

(0,03 – у ) (а + 135) + у (а + 149) = 7,31,

у = (3,26 – 0,03а )/14.

Дальнейшее решение осуществляем подбором вариантов значений молярной массы М = а возможных дикарбоновых кислот:

Если М = а = 90, то у = (3,26 – 0,03 90)/14 = 0,56/14 = 0,04 моль, что не соответствует условию задачи, где х + у = 0,03 моль.

Если М = а = 104, то у = (3,26 – 0,03 104)/14 = 0,01 моль.
Такое решение:
а = 104 г/моль, т.е. кислоты – малоновая НООССН 2 СООН (х = 0,02 моль) и янтарная НООССН 2 СН 2 СООН (у = 0,01 моль) – удовлетворяет всем требованиям.

Следующий гомолог: М = а = 118 г/моль не подходит, т.к. тогда количество вещества у = (3,26 – 0,03 118)/14 = –0,02 моль – отрицательная величина.

Ответ. В состав смеси входили кислоты НООССН 2 СООН (0,02 моль) и НООССН 2 СН 2 СООН
(0,01 моль).

УПРАЖНЕНИЯ.

1. Составьте уравнения реакций бензойной кислоты С 6 Н 5 СООН со следующими реагентами:
а)
КОН; б) Аl; в) СаО; г) Na 2 CO 3 ; д) NH 3 (водн.). (Реакции протекают с замещением протона карбоксильной группы.)

2. Запишите уравнения реакций бензойной кислоты, в которых происходит расщепление связи
С–ОН в карбоксильной группе. Используйте реагенты: а) РСl 5 ; б) SOCl 2 ; в) пропанол-1 в присутствии минеральной кислоты НСl.

3. Составьте уравнения реакций, с помощью которых изобутановую кислоту (СН 3) 2 СНСООН можно превратить в следующие соединения: а) изобутират натрия (СН 3) 2 СНСООNa;
б)
этилизобутират (сложный эфир); в) изобутирилхлорид (СН 3) 2 СНС(О)Сl; г) изобутирамид
(СН 3) 2 СНС(О)NH 2 .

4. Составьте уравнения реакций: а) декарбоксилирование бензойной кислоты С 6 Н 5 СООН до бензола под действием горячего раствора КМnО 4 ; б) восстановление бензольного кольца бензойной кислоты (Н 2 , Ni, 20 °С, 1 атм ) с образованием циклогексанкарбоновой кислоты;
в) бромирование бензойной кислоты в метаположение бензольного кольца под действием
Вr 2 в присутствии Fe; г) нитрование бензойной кислоты в метаположение при действии смеси концентрированых кислот НNO 3 /H 2 SO 4 .

5. Неизвестная кислота может быть либо орто-нитробензойной кислотой (t пл = 147 °С), либо орто-аминобензойной (антраниловой) кислотой (t пл = 146 °С). При нейтрализации 0,201 г образца этой кислоты расходуется 12,4 мл раствора щелочи с концентрацией 0,098 моль/л NaOH. Какая это кислота?

6. К 24,4 г смеси уксусной и муравьиной кислот прибавили 227,3 мл 10%-го раствора гидроксида натрия (плотность – 1,1 г/мл). Для связывания избытка щелочи с образованием кислой соли потребовалось 2,8 л (н.у.) оксида серы(IV). Определите состав исходной смеси кислот.

7. После прокаливания натриевой соли пропионовой кислоты RCOONa получен белый остаток, растворимый в воде. Этот остаток изменяет окраску влажного красного лакмуса в синий цвет и реагирует с разбавленной соляной кислотой с выделением пузырьков газа. Какой возможный состав остатка? Напишите уравнение реакции термического разложения натриевой соли пропионовой кислоты во влажном воздухе.

Ответы на упражнения к теме 2

Урок 27

а) С 6 Н 5 СООН + КОН С 6 Н 5 СООК + Н 2 О;
б) 6С 6 Н 5 СООН + 2Аl 2(С 6 Н 5 СОО) 3 Аl + 3Н 2 ;
в) 2С 6 Н 5 СООН + СаО (С 6 Н 5 СОО) 2 Са + Н 2 О;
г) 2С 6 Н 5 СООН + Na 2 CO 3 2С 6 Н 5 СООNa + H 2 O + CO 2 ;
д) С 6 Н 5 СООН + NH 3 С 6 Н 5 СООNН 4 .

5. Найдем количество вещества NaOH в объеме V = 12,4 мл (0,0124 л) раствора с молярной концентрацией c мол (NaOH) = 0,098 моль/л:

(NaOH) = c мол V = 0,098 0,0124 = 1,215 10 –3 моль.

Количества веществ одноосновной кислоты RCOOH и щелочи NaOH, расходуемые в реакции нейтрализации, одинаковые, т.е. (RCOOH) = 1,215 10 –3 моль. Значит, молярная масса неизвестной кислоты М (RCOOH) = m / = 0,201/1,215 10 –3 = 165 г/моль.
Молярные массы возможных кислот следующие:

Ответ. орто -Нитробензойная кислота.

6. Масса NaOH, содержащегося в заданном объеме V = 227,3 мл с концентрацией c (NaOH) = 10% и плотностью = 1,1 г/мл, составляет:
m (NaOH) = c (%)(NaOH) V /100(%) = 10 1,1 227,3/100 = 25 г.

Избыток щелочи (m *) найдем из уравнения реакции:

В реакции со смесью кислот НСООН и СН 3 СООН израсходовалось 20 г NaOH.
Обозначим количества веществ уксусной кислоты и муравьиной кислоты:

(СН 3 СООН) = у моль, (НСООН) = z моль.

Запишем уравнения реакций:

Расход количества вещества щелочи в реакциях (1) и (2) такой же, как у кислот. Зная общую массу смеси кислот (m (смеси) = 24,4 г) и расход щелочи (20 г), составим систему двух уравнений с двумя неизвестными:

Решая систему, найдем: у = 0,1 моль, z = 0,4 моль.

По массе это составляет:

m(CH 3 COOH) = 0,1 60 = 6 г,
m (HCOOH) = 0,4 46 = 18,4 г.

Концентрация в процентах по массе:

с(СН 3 СООН) = (6/24,4) 100(%) = 24,6%.

Ответ. Состав исходной смеси кислот – 6 г (24,6%) СН 3 СООН и 18,4 г (75,4%) НСООН.

7. Уравнение реакции термического разложения натриевой соли пропионовой кислоты во влажном воздухе:

Белый остаток после прокаливания – это сода Na 2 CO 3 . В воде сода растворяется и гидролизуется:

Na 2 CO 3 + H 2 O = NaHCO 3 + NaOH.

Образующаяся щелочь NaOH окрашивает красный лакмус в синий цвет.

Сода реагирует с кислотой НСl с выделением газа СО 2.

КАРБОНОВЫЕ КИСЛОТЫ.

Карбоновыми кислотами называются производные углеводородов, в молекуле которых содержится одна или несколько карбоксильных групп

Общая формула предельных одноосновных карбоновых кислот: С n H 2n O 2


Классификация карбоновых кислот.

1. По числу карбоксильных групп:

Одноосновные (монокарбоновые)


Многоосновные (дикарбоновые, трикарбоновые и т.д.).



  1. По характеру углеводородного радикала:

Предельные CH 3 -CH 2 -CH 2 -COOH ; бутановая кислота.


- непредельные CH 2 =CH-CH 2 -COOH ; бутен-3-овая кислота.
- ароматические

пара-метилбензойная кислота
НАЗВАНИЯ КАРБОНОВЫХ КИСЛОТ.


Название

Формула

кислоты


кислоты

её соли и

(эфиры)


муравьиная

метановая

формиат

HCOOH

уксусная

этановая

ацетат

CH 3 COOH

пропионовая

пропановая

пропионат

CH 3 CH 2 COOH

масляная

бутановая

бутират

CH 3 (CH 2) 2 COOH

валериановая

пентановая

валерат

CH 3 (CH 2) 3 COOH

капроновая

гексановая

гексанат

CH 3 (CH 2) 4 COOH

пальмитиновая

гексадекановая

пальмитат

С 15 Н 31 СООН

стеариновая

октадекановая

стеарат

С 17 Н 35 СООН

акриловая

пропеновая

акрилат

CH 2 =CH–COOH

олеиновая

цис -9-октадеценовая

олеат

СН 3 (СН 2) 7 СН=СН(СН 2) 7 СООН

бензойная

бензойная

бензоат

C 6 H 5 -COOH

щавелевая

этандиовая

оксалат

НООС - COOH

ИЗОМЕРИЯ КАРБОНОВЫХ КИСЛОТ.

1. Изомерия углеродной цепи. Начинается с бутановой кислоты (С 3 Н 7 СООН ) , которая существует в виде двух изомеров: масляной (бутановой) и изомасляной (2-метилпропановой) кислот.
2. Изомерия положения кратной связи в непредельных кислотах, например:

СН 2 =СН-СН 2 -СООН СН 3 -СН=СН-СООН

Бутен-3-овая кислота Бутен-2-овая кислота

(винилуксусная кислота) (кротоновая кислота)
3. Цис-, транс-изомерия в непредельных кислотах, например:

4. Межклассовая изомерия : Карбоновые кислоты изомерны сложным эфирам:

Уксусная кислота СН 3 -СООН и метилформиат Н-СООСН 3


5. Изомерия положения функциональных групп у гетерофункционалъных кислот.

Например, существуют три изомера хлормасляной кислоты: 2-хлорбутановая, 3-хлорбутановая и 4-хлорбутановая.


СТРОЕНИЕ КАРБОКСИЛЬНОЙ ГРУППЫ.

Карбоксильная группа сочетает в себе две функциональные группы – карбонил и гидроксил, взаимно влияющие друг на друга

Кислотные свойства карбоновых кислот обусловлены смещением электронной плотности к карбонильному кислороду и вызванной этим дополнительной (по сравнению со спиртами) поляризацией связи О–Н.
В водном растворе карбоновые кислоты диссоциируют на ионы:

Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей. С увеличением молекулярной массы растворимость кислот в воде уменьшается.


ПРОИЗВОДНЫЕ КАРБОНОВЫХ КИСЛОТ – в них гидроксогруппа замещена на некоторые другие группы. Все они при гидролизе образуют карбоновые кислоты.

Соли

Сложные эфиры

Галогенангидриды

Ангидриды

Амиды.










ПОЛУЧЕНИЕ КАРБОНОВЫХ КИСЛОТ.


1. Окисление спиртов в жестких условиях – раствором перманганата или дихромата калия в кислой среде при нагревании.



2.Окисление альдегидов : раствором перманганата или дихромата калия в кислой среде при нагревании, реакцией серебряного зеркала, гидроксидом меди при нагревании.



3. Щелочной гидролиз трихлоридов :

R-CCl 3 + 3NaOH  + 3NaCl

неустойчивое вещество

 RCOOH + H 2 O


4. Гидролиз сложных эфиров.

R-COOR 1 + KOH  RCOOK + R 1 OH

RCOOK + HCl  R-COOH + KCl



5. Гидролиз нитрилов, ангидридов, солей.

1)нитрил: R-CN + 2H 2 O –(H +) RCOOH

2)ангидрид: (R-COO) 2 O + H 2 O  2RCOOH

3)натриевая соль: R-COONa+HClR-COOH + NaCl


6. Взаимодействие реактива Гриньяра с СО 2:

R-MgBr + CO 2  R-COO-MgBr

R-COO-MgBr -(+H 2 O) R-COOH +Mg(OH)Br



7. Муравьиную кислоту получают нагреванием оксида углерода (II) с гидроксидом натрия под давлением:

NaOH + CO –(200 o C,p) HCOONa

2HCOONa+ H 2 SO 4 2HCOOH + Na 2 SO 4



8. Уксусную кислоту получают каталитическим окислением бутана :

2C 4 H 10 + 5O 2  4CH 3 -COOH + 2H 2 O

9. Для получения бензойной кислоты можно использовать окисление монозамещенных гомологов бензола кислым раствором перманганата калия:

5C 6 H 5 –CH 3 +6KMnO 4 +9H 2 SO 4 5C 6 H 5 -COOH+3K 2 SO 4 + MnSO 4 + 14H 2 O

ХИМИЧЕСКИЕ СВОЙСТВА КАРБОНОВЫХ КИСЛОТ.

1. Кислотные свойства – замещение атома Н в карбоксильной группе на металл или ион аммония.


1.Взаимодействие с металлами

2CH 3 COOH+Ca (CH 3 COO) 2 Ca+H 2

ацетат кальция



2.Взаимодействие с оксидами металлов

2CH 3 COOH+BaO (CH 3 COO) 2 Ba+H 2 O

3.Реакция нейтрализации с гидроксидами металлов

2CH 3 COOH+Cu(OH) 2  (CH 3 COO) 2 Cu + 2H 2 O

4.Взаимодействие с солями более слабых и летучих (или нерастворимых) кислот

2CH 3 COOH+CaCO 3  (CH 3 COO) 2 Ca + H 2 O + CO 2

4*. Качественная реакция на карбоновые кислоты: взаимодействие с содой (гидрокарбонатом натрия) или другими карбонатами и гидрокарбонатами.

В результате наблюдается выделение углекислого газа.

2CH 3 COOH+Na 2 CO 3 à 2CH 3 COONa+H 2 O+CO 2 

2. Замещение гидроксильной группы:


5.Реакция этерификации




6.Образование галоген-ангидридов – с помощью хлоридов фосфора (III) и (V).



7. Образование амидов:




8. Получение ангидридов.

С помощью Р 2 О 5 можно дегидратировать карбоновую кислоту – в результате получается ангидрид.

2СН 3 – СООН + Р 2 О 5  (СН 3 СО) 2 О + НРО 3


3. Замещение атома водорода при атоме углерода, ближайшем к карбоксильной группе (-углеродный атом)


9.Галогенирование кислот – реакция идёт в присутствии красного фосфора или на свету.

CH 3 -COOH+Br 2 –(Р кр) CH 2 -COOH + НВr

Особенности муравьиной кислоты.


1. Разложение при нагревании.

Н-СООН –(H 2 SO 4 конц,t) CO + H 2 O

2. Реакция серебряного зеркала и с гидроксидом меди (II) – муравьиная кислота проявляет свойства альдегидов.

Н-COOH+2OH(NH 4) 2 СО 3 +2 Ag +2NH 3 +H 2 O
H-COOH + Cu(OH) 2 –t CO 2 + Cu 2 O + H 2 O

3. Окисление хлором и бромом, а также азотной кислотой.

H-COOH + Cl 2  CO 2 + 2HCl

Особенности бензойной кислоты.


1. Разложение при нагревании – декарбоксилирование.

При нагревании бензойной кислоты она разлагается на бензол и углекислый газ:


2. Реакции замещения в ароматическом кольце.

Карбоксильная группа является электроноакцепторной, она уменьшает электронную плотность бензольного кольца и является мета-ориентантом.
+ HNO 3 –(H 2 SO 4) +H 2 O

Особенности щавелевой кислоты.


1. Разложение при нагревании



2. Окисление перманганатом калия.


Особенности непредельных кислот (акриловой и олеиновой).


1. Реакции присоединения.

Присоединение воды и бромоводорода к акриловой кислоте происходит против правила Марковникова, т.к. карбоксильная группа является электроноакцепторной:

СН 2 =СН-СООН + НBr  Br-CH 2 -CH 2 -COOH

Также к непредельным кислотам можно присоединять галогены и водород:

С 17 Н 33 -СООН+H 2  C 17 H 35 -COOH(стеариновая)



2. Реакции окисления

При мягком окислении акриловой кислоты образуется 2 гидроксогруппы:

3СН 2 =СН-СООН+2KMnO 4 +2H 2 O 2CH 2 (OH)-CH(OH)-COOК + CH 2 (OH)-CH(OH)-COOH +2MnO 2


Свойства солей карбоновых кислот.

Свойства галогенангидридов

СЛОЖНЫЕ ЭФИРЫ

это соединения, содержащие карбоксильную группу, связанную с двумя алкильными радикалами.

Общая формула сложных эфиров такая же, как у карбоновых кислот: C n H 2 n O 2


НОМЕНКЛАТУРА СЛОЖНЫХ ЭФИРОВ. Названия сложных эфиров определяются названиями кислоты и спирта, из которых они образуются.

ПОЛУЧЕНИЕ СЛОЖНЫХ ЭФИРОВ.

1)Cложные эфиры могут быть получены при взаимодействии карбоновых кислот со спиртами (реакция этерификации ). Катализаторами являются минеральные кислоты.

2) Сложные эфиры фенолов нельзя получить с помощью этерификации , для их получения используют реакцию фенолята с галогенангидридом кислоты:

С 6 Н 5 -О - Na + + C 2 H 5 –C=O  NaCl + C 6 H 5 –O-C=O

Cl C 2 H 5

Фениловый эфир пропановой кислоты (фенилпропаноат)

Виды изомерии сложных эфиров.

1. Изомерия углеродной цепи начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку - с пропилового спирта, например, этилбутаноату изомерны этилизобутаноат, пропилацетат и изопропилацетат.

2. Изомерия положения сложноэфирной группировки -СО-О-. Этот вид изомерии начинается со сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, например этилацетат и метилпропионат.

3. Межклассовая изомерия с карбоновыми кислотами.
СВОЙСТВА СЛОЖНЫХ ЭФИРОВ.
1. Гидролиз сложных эфиров.

Реакция этерификации обратима. Обратный процесс – расщепление сложного эфира при действии воды с образованием карбоновой кислоты и спирта – называют гидролизом сложного эфира.

Кислотный гидролиз обратим:

Щелочной гидролиз протекает необратимо:

Эта реакция называется омылением сложного эфира.


2. Реакция восстановления. Восстановление сложных эфиров водородом приводит к образованию двух спиртов:

Карбоновыми кислотами называются производные углеводородов, в молекуле которых содержится одна или несколько карбоксильных групп

Общая формула предельных одноосновных карбоновых кислот: С n H 2n O 2

Классификация карбоновых кислот.

1. По числу карбоксильных групп:

Одноосновные (монокарбоновые)

Многоосновные (дикарбоновые, трикарбоновые и т.д.).

    По характеру углеводородного радикала:

Предельные CH 3 -CH 2 -CH 2 -COOH ; бутановая кислота.

Непредельные CH 2 =CH-CH 2 -COOH ; бутен-3-овая кислота.

Ароматические

пара-метилбензойная кислота

Названия карбоновых кислот.

Название

её соли и

муравьиная

метановая

уксусная

этановая

пропионовая

пропановая

пропионат

масляная

бутановая

CH 3 (CH 2) 2 COOH

валериановая

пентановая

CH 3 (CH 2) 3 COOH

капроновая

гексановая

гексанат

CH 3 (CH 2) 4 COOH

пальмитиновая

гексадекановая

пальмитат

С 15 Н 31 СООН

стеариновая

октадекановая

С 17 Н 35 СООН

акриловая

пропеновая

олеиновая

СН 3 (СН 2) 7 СН=СН(СН 2) 7 СООН

бензойная

бензойная

щавелевая

этандиовая

НООС - COOH

ИЗОМЕРИЯ КАРБОНОВЫХ КИСЛОТ.

1. Изомерия углеродной цепи. Начинается с бутановой кислоты (С 3 Н 7 СООН ) , которая существует в виде двух изомеров: масляной (бутановой) и изомасляной (2-метилпропановой) кислот.

2. Изомерия положения кратной связи в непредельных кислотах, например:

СН 2 =СН-СН 2 -СООН СН 3 -СН=СН-СООН

Бутен-3-овая кислота Бутен-2-овая кислота

(винилуксусная кислота) (кротоновая кислота)

3. Цис-, транс-изомерия в непредельных кислотах, например:

4. Межклассовая изомерия : Карбоновые кислоты изомерны сложным эфирам:

Уксусная кислота СН 3 -СООН и метилформиат Н-СООСН 3

5. Изомерия положения функциональных групп у гетерофункционалъных кислот.

Например, существуют три изомера хлормасляной кислоты: 2-хлорбутановая, 3-хлорбутановая и 4-хлорбутановая.

Строение карбоксильной группы.

Карбоксильная группа сочетает в себе две функциональные группы – карбонил и гидроксил, взаимно влияющие друг на друга

Кислотные свойства карбоновых кислот обусловлены смещением электронной плотности к карбонильному кислороду и вызванной этим дополнительной (по сравнению со спиртами) поляризацией связи О–Н. В водном растворе карбоновые кислоты диссоциируют на ионы:

Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей. С увеличением молекулярной массы растворимость кислот в воде уменьшается.

ПРОИЗВОДНЫЕ КАРБОНОВЫХ КИСЛОТ – в них гидроксогруппа замещена на некоторые другие группы. Все они при гидролизе образуют карбоновые кислоты.

Сложные эфиры

Галогенангидриды

Ангидриды

ПОЛУЧЕНИЕ КАРБОНОВЫХ КИСЛОТ.

1. Окисление спиртов в жестких условиях – раствором перманганата или дихромата калия в кислой среде при нагревании.

2.Окисление альдегидов : раствором перманганата или дихромата калия в кислой среде при нагревании, реакцией серебряного зеркала, гидроксидом меди при нагревании.

3. Щелочной гидролиз трихлоридов :

R-CCl 3 + 3NaOH  + 3NaCl

неустойчивое вещество

 RCOOH + H 2 O

4. Гидролиз сложных эфиров.

R-COOR 1 + KOH  RCOOK + R 1 OH

RCOOK + HCl  R-COOH + KCl

5. Гидролиз нитрилов, ангидридов, солей.

1)нитрил: R-CN + 2H 2 O –(H +) RCOOH

2)ангидрид: (R-COO) 2 O + H 2 O  2RCOOH

3)натриевая соль: R-COONa+HClR-COOH + NaCl

6. Взаимодействие реактива Гриньяра с СО 2 :

R-MgBr + CO 2  R-COO-MgBr

R-COO-MgBr -(+H 2 O) R-COOH +Mg(OH)Br

7. Муравьиную кислоту получают нагреванием оксида углерода (II) с гидроксидом натрия под давлением:

NaOH + CO –(200 o C,p) HCOONa

2HCOONa+ H 2 SO 4 2HCOOH + Na 2 SO 4

8. Уксусную кислоту получают каталитическим окислением бутана :

2C 4 H 10 + 5O 2  4CH 3 -COOH + 2H 2 O

9. Для получения бензойной кислоты можно использовать окисление монозамещенных гомологов бензола кислым раствором перманганата калия:

5C 6 H 5 –CH 3 +6KMnO 4 +9H 2 SO 4 5C 6 H 5 -COOH+3K 2 SO 4 + MnSO 4 + 14H 2 O

ХИМИЧЕСКИЕ СВОЙСТВА КАРБОНОВЫХ КИСЛОТ.