Контрольная работа действие ионизирующих излучений на растения. Действие на растения радиации Радиоактивность – это Влияние ионизирующего излучения на растения

Влияние радиации на клетки организма.

Растения Томской области, снижающие радиационное воздействие.

Выполнили:

Крутых Оксана

Филинова Анастасия

ЗАТО Северск


Цели работы

1. Выявить растения Томской области, эффективно снижающие влияние радиации на организм.

2. Выявить группы населения, в рационе которых содержится минимум продуктов, уменьшающих радиационное воздействие и распространить информацию о необходимости их употребления.

Задачи

1. Изучить механизм влияние радиации на клетки организм.

2. Рассмотреть последствия влияния радиационного излучения на организм (на примере населения городов Хиросимы и Нагасаки).

3. Выявить вещества, способные снизить воздействие радиации на организм.

4. Выявить растения Томской области, содержащие эти вещества.

5. Провести опрос населения.

6. Проверить на практике эффективность растений.

7. распространить информацию среди населения о необходимости употребления веществ, снижающие влияние радиации на организм.

Актуальность проблемы

Существует два вида радиоактивности: естественная и техногенная. Для техногенных источников радиации опасность облучения выражена гораздо сильнее, чем для естественных. За последние несколько десятилетий человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров. Все это приводит к увеличению дозы облучения, как отдельных людей, так и населения Земли в целом.

Поэтому становится очень важной защита человека от возрастающего влияния радиации на организм, которое ведет к различным нарушениям физиологических процессов и патологиям. В этом проекте рассмотрена возможность сохранения здоровья человека в данной ситуации с помощью самой природы. Используя доступные в нашем регионе растения постоянно, мы способны защититься от естественного радиационного фона, а совместно с медикаментозными средствами эффективно лечить серьезнейшие заболевания, возникающими при получении большой дозы радиации.


Радиация и организм человека

Влияние радиации на клетки организма

Все живые существа состоят из клеток - основных строительных «кирпичиков» жизни. Повреждением биологически важных макромолекул далеко не полностью объясняется радиационное поражение клетки. Клетка – слаженная динамическая система биологически важных макромолекул, которые скомпонованы в субклеточных образованьях, выполняющих определенные физиологические функции. Поэтому эффект действия радиации можно понять, только приняв во внимание изменения, происходящие как в самих клеточных органеллах, так и во взаимоотношениях между ними.

Наиболее чувствительными к облучению органеллами клеток организма млекопитающих являются ядро и митохондрии. Повреждения этих структур при малых дозах и проявляются в самые ранние сроки. Так, при облучении митохондрий лимфатических клеток дозой 50 Р. и более наблюдается угнетение процессов окислительного фосфорилирования в ближайшие часы после облучения. При этом обнаруживаются изменения физико-химических свойств нуклеопротеидных комплексов, в результате чего количественно и качественно изменяются ДНК, и разобщается процесс синтеза ДНК – РНК – белок. В ядрах радиочувствительных клеток почти тотчас же после облучения угнетаются энергетические процессы, происходит выброс в цитоплазму ионов натрия и калия, нарушается нормальная функция мембран. Одновременно возможны разрывы хромосом, выявляемые в период клеточного деления, хромосомные аберрации и точковые мутации, в результате которых образуются белки, утратившие свою нормальную биологическую активность. Более выраженной радиочувствительностью, чем ядра, обладают митохондрии.

Эффект воздействия ионизирующей радиации на клетку – результат комплексных взаимосвязанных и взаимообусловленных преобразований. Радиационное поражение клетки осуществляется в три этапа. На первом этапе излучение воздействует на сложные макромолекулярные образования, ионизируя и возбуждая их.

Поглощенная энергия может мигрировать по макромолекулам, реализуясь в слабых местах. В ДНК - хромофорные группы тимина, в липидах - ненасыщенные связи. Указанный этап повреждения может быть назван физической стадией лучевого воздействия на клетку.

Второй этап – химические преобразования. Они соответствуют процессам взаимодействия радикалов белков, нуклеиновых кислот и липидов с водой, кислородом, радикалами воды с биомолекулами и возникновению органических перекисей, вызывающих быстро протекающие реакции окисления, которые приводят к появлению множества измененных молекул. В результате этого начальный эффект многократно усиливается. Радикалы, возникающие в слоях упорядоченно расположенных белковых молекул, взаимодействуют с образованием «сшивок», в результате чего нарушается структура биологических мембран. Повреждение мембран приводит к высвобождению ряда ферментов. В результате повреждения лизосомных мембран наблюдается увеличение активности ДНК-азы, РНК-азы, и ряда других ферментов.

Третий этап – биохимический. Высвободившиеся ферменты путем диффузии достигают любой органеллы клетки и легко проникают в нее благодаря увеличению проницаемости мембран. Под воздействием этих ферментов происходит распад высокомолекулярных компонентов клетки, в том числе нуклеиновых кислот и белков.

Действие ничтожно малых количеств поглощенной энергии оказывается для клетки губительным из-за физического, химического и биохимического усиления радиационного эффекта, и основную роль в развитии этого эффекта играет повреждение над-молекулярных структур, обладающих высокой радиочувствительностью.


Последствия влияния радиационного излучения на организм

Последствия, которые вызывает воздействие излучения в живых организмах, в частности в человеке, можно классифицировать различными способами, зависящими главным образом от величины полученной дозы. Эти последствия перечислены в следующем порядке:

1. Изменения в соматических клетках, приводящие к возникновению рака;

2. Генетические мутации, оказывающие влияние на будущие поколения;

3. Влияние на зародыш и плод, вследствие облучения матери в период беременности;

Смерть непосредственно в момент облучения.

Нужно отметить, что у людей получивших облучение, по прошествии десятилетий начинают развиваться раковые опухоли. Раковая опухоль возникает в тот момент, когда соматическая клетка, выйдя из-под контроля организма, начинает неистово делиться, несмотря на создаваемую угрозу для живого существа в целом. В результате формируется одиночная крупная масса клеток или группа более мелких образований.

На рисунке 1 показаны коэффициенты радиационного риска в организме человека. На нем показано, что большей степенью риска подвержены половые органы (яичники или семенники), красный косный мозг.

Вследствие губительного влияния радиации на клетки (описанного выше) косного мозга у человека начинает развиваться серьезное заболевание – лейкоз.

Лейкоз (лейкемия, белокровие, рак крови) (от греческих слов leukos-белый и haima-кровь)- опухолевое заболевание красного костного мозга, системы крови и кроветворных органов неопластической природы, в основе которого лежит первичная патология родоначальных клеток кроветворения, сопровождающиеся нарушением процессов их пролиферации и дифференциации и возникновением патологических клонов опухолевых клеток. Изменения в одной и более стволовых клетках буквально наводняет организм неполноценными белыми клетками, что собственно и есть лейкоз. Люди, целиком, подвергшиеся облучению умирают от лейкоза примерно через 5-7 лет. Из всех злокачественных заболеваний, вызываемых действием радиации, лейкоз является для нас наиболее изученным, потому что промежуток времени между причиной смерти, его породившей, и развитием клинических симптомов относительно короткий. Связь между облучением организма и возникновением лейкоза хорошо доказана. Частота проявления лейкоза среди выживших жертв атомной бомбардировки зависела от того, на каком расстоянии от взрыва они находились, т.е. от полученной дозы излучения. Хотя именно лейкоз в представлении большинства людей связан с атомной бомбой, по прошествии многих лет стало очевидным, что он не является главной формой рака, вызываемого радиацией. Последующие обследования японцев, выживших после атомной бомбардировки, выявляли у них намного чаще, чем у остального населения рак легкого, молочной железы и, особенно, щитовидной железы. Данные типы раковых заболеваний развиваются гораздо медленнее. В настоящее время на каждый случай радиационного лейкоза приходится приблизительно 3 случая раковых опухолей. Это число продолжает расти и к тому времени, когда не станет людей, переживших атомную бомбардировку Хиросимы и Нагасаки, оно, возможно, станет равным 5.

Лейкозы протекают неравномерно. Различают несколько периодов: начальный, выраженных явлений, ремиссий и рецидивов. В начальной стадии больные чувствуют себя практически здоровыми, и диагноз устанавливается при случайном исследовании крови по поводу сопутствующих заболеваний. В период выраженных явлений все симптомы болезни проявляются в значительной степени, и болезнь начинает быстро прогрессировать.

В результате специфической терапии, а иногда и самопроизвольно наступает период улучшения в состоянии больного или стадия ремиссии. В этот период больной сохраняет трудоспособность.

Обострение всякого лейкоза сопровождается резким ухудшением общего состояния больного, появлением лихорадки, увеличением печени, селезенки и лимфатических узлов, развитием анемии, снижением тромбоцитов.

В период обострений лейкоз нередко переходит в конечную, кахектическую стадию.

Обратим внимание на влияние ионизирующей радиации на половые органы человека. Изменения в клетках организма, приводящие к возникновению рака, и мутации в половых клетках, оказывающие влияние на будущие поколения, являются биологическими последствиями в результате работы на атомных электростанциях. Воздействие радиации на развивающийся зародыш или плод представляет собой особый случай, заслуживающий специального обсуждения, поскольку все усилия надо направлять на его исключение. Возникновение смерти непосредственно в момент излучения связанно с получением огромной дозы радиации. Последнее возникает только в катастрофической ситуации, например при взрыве атомной бомбы или аварии на атомном реакторе.

Если мутация происходит в зародышевой клетке (в сперматозоиде или в яйцеклетке), последствия будут ощутимыми не только для индивидуума, который разовьется из этой клетки, но и в ком-то из будущих поколений. Слияние сперматозоида с яйцеклеткой образует крошечный организм, едва заметный, но несущий нить нашей наследственности. Каждая клетка мужская и женская содержит по 23 одиночные хромосомы. Когда эти две клетки сливаются вместе, 23 одиночные хромосомы отцовской зародышевой клетки попарно объединяются с 23 одиночными хромосомами материнской зародышевой клетки, образуя первую клетку нового человеческого, содержащую уже 23 пары хромосом, т. е. Всего 46 хромосом. (рис.2)

Хромосомы несут в закодированной форме все признаки, которые отличают организм человека от других животных. Они содержат информацию, необходимую для воспроизведения всех особенностей, «имеющихся данном роде». Хромосомы - длинные нитевидные структурные клетки, состоящие из сложного вещества, называемого дезоксирибонуклеиновой кислотой (ДНК), представляющей собой очень крупную молекулу. Основу ДНК образуют углеводы и остатки фосфорной кислоты, служащие в качестве скелета для удержания на определенном месте особых молекул, несущих наследственный код. Иногда участки генетического кода могут меняться местами, при этом порядок следования пар азотистых оснований нарушается. В хромосоме происходит дефект, который переходит во все дочерние клетки, получаемые при делении. Когда поврежденный ген или хромосома появятся в сперматозоиде или яйцеклетке, во всех клетках образованного зародыша повторится это повреждение. Если этот эмбрион не погибнет, а со временем вырастет и станет сам родителем, генетический дефект сможет перейти к его детям и проследовать через следующие поколения. Любая клетка, содержащая всевозможные нарушения в хромосомах и генах, называется мутированной клеткой. Посмотрим набор хромосом человека подвергнутого ионизирующему облучению. (Рис 3)

Мутация, возникшая в соматической клетке, будет оказывать влияние только на сам индивидуум, причем на протяжении всей его жизни. Мутация, возникшая в половой клетке, называется генетической мутацией и может передаваться последующим поколениям. Радиация может вызывать поломки и изменения в ДНК половых клеток и таким образом увеличить число мутаций по сравнению с тем, что происходит в ходе естественного развития. Мутации, вызванные ионизирующим излучением, не отличаются от естественных мутаций. Радиация не порождает каких-то новых, уникальных или необычных мутаций, а всего лишь увеличивает сферу вредного воздействия, с которой живые организмы так или иначе сталкиваются.

Различные виды мутаций, возникающие естественно и под влиянием радиации, можно подразделить на следующие категории:

1. Одиночные генные мутации;

2. Неправильный набор хромосом, т.е. слишком большое или малое их число или наличие хромосомных аберраций с неправильным присоединением осколков хромосом после их разрыва в момент деления клетки;

3. Частые, но небольшие мутации, подобные тем, что можно наблюдать у плодовых мушек дрозофил и которые нельзя идентифицировать по особым отличительным признакам и наблюдаемым изменениям в хромосомах.

Неправильный набор хромосом.

Генетические последствия могут заключаться в неправильном числе хромосом - их или больше, либо меньше нормы. Болезнь Дауна – наиболее известный пример заболевания, связанного с появлением дополнительной 21 хромосомы. Напротив, некоторые редко встречающиеся формы умственной отсталости происходят вследствие потери всего лишь одной хромосомы.

Люди, страдающие такими тяжелыми болезнями, редко имеют детей и поэтому денные мутации исчезают в популяции с той же частотой, с которой они спонтанно появляются. В отличие от генных мутаций, слишком незначительных по размерам, чтобы их можно было увидеть, некоторые из дефектов хромосом настолько явны, что их можно легко наблюдать при микроскопическом исследовании хромосом. У плода разрыва и перестройки хромосом, происходящие самопроизвольно или в результате облучения, обычно приводят к гибели, но если организм выживает, хромосомные нарушения могут стать причиной грубых физических аномалий или умственной отсталости, или того и другого порока одновременно.

Восстановление клеток от повреждений генетического аппарата.

Задается вполне закономерный вопрос: неужели клетки не могут восстанавливаться самостоятельно? Известно, что успешность восстановления зависит от степени поврежденности всей клетки в целом. В клетках при облучении возникают повреждения двух типов - локальные повреждения хромосом и генерализованное повреждение внехромосомных компонентов. Повреждения обоих типов обратимы, и клетки могут от них восстанавливаться. При этом успешность восстановления клеток от хромосомных повреждений в большей мере зависит от того, насколько глубоко повреждены внехромосомные системы и сможет ли клетка восстановиться в первую очередь от этих повреждений.

Повреждения, приводящие к мутациям, в значительной мере потенциальны, или обратимы. Клетки могут от них восстанавливаться. Клетки обладают системой ферментов, осуществляющих такое восстановление. Потенциальные повреждения не тождественны мутациям: они могут лишь приводить к мутациям. Чтобы потенциальное повреждение привело к мутации, или реализовалось, в клетке должны осуществляться определенные метаболические процессы. Следовательно, путь от первичного потенциального повреждения к мутации – метаболический путь, в котором принимают участие определенные ферменты. Изучение восстановления клеток от потенциальных повреждений направлено на выявление тех механизмов, с помощью которых клетки противостоят неблагоприятным факторам внешней среды и которые, возможно, участвуют в регуляции темпа естественного мутационного процесса. Изучение реализации потенциальных повреждений – это изучение путей и механизмов формирования наследственных изменений – мутаций генов, хромосом, плазмид.

Клетки могут восстановиться от повреждения молекул ДНК. В случае действия ионизирующих излучений – главным образом разрывы одной или обеих цепей ДНК, а при действии разных химических агентов – различные химические изменения молекулы ДНК или ДНК-белкового комплекса.

Еще в 1967 году ученым удалось выделить ферменты, способные воссоединять концы разорванной нити ДНК, т.е. восстанавливать ДНК от одиночных разрывов. Это – уже знакомые нам ферменты лигазы, а также сходные с ними силазы. Эти ферменты «работают» весьма интенсивно – процесс восстановления разорванных концов молекул ДНК начинается сразу после облучения и завершается очень быстро.

Как показали исследования А. И. Газиеват и других ученых, репарация с участками легаз возможна только в том случае, когда фосфордиэфирные связи в молекуле ДНК разрываются с образованием совершенно определенных концевых участков- 5 , фосфорильных (5 , РО) и 3 , гидроксильных (3 , ОН).


Вещества и элементы, снижающие влияние радиации на организм

Все вещества, способные снизить поражающее действие радиации делятся на две группы. Первая – это вещества, выводящие радионуклиды из организма, вторая – вещества, устраняющие последствия радиационного облучения, способствующие лечению заболевания (радиопротекторы).

Нуклидовыводящие вещества

Некоторые радиоактивные вещества по своему «поведению» напоминают необходимые человеку микро- и макроэлементы, благодаря чему накапливаются в организме, нарушая его физиологическую деятельность. Целый ряд элементов и веществ из продуктов растительного происхождения, способен выводить радионуклиды из организма или снижать их уровень. При этом повышается устойчивость человека к внутреннему облучению.

Кальций. Так в условиях кальциевой недостаточности организм активно усваивает радиоактивный стронций-90, который по своим свойствам и «поведению» в организме напоминает кальций. Соответственно активное потребление продуктов, содержащих кальций и его соединения и витамина D, без которого невозможно усвоение кальция, приведет к вытеснению радиоактивного стронция и выведению его из организма.

Магний, фосфор. Использование в питании продуктов, содержащих магний и фосфор, также значительно снижает всасывание радиоактивного стронция. Эффективным является их комплексное потребление с кальцием.

Калий. Калий способствует выведению радиоактивного цезия-137. Механизм этого процесса сходен с взаимодействием кальций – стронций.

Йод. При попадании в организм радиоактивных изотопов йода, они накапливается в щитовидной железе, вызывая изменения в ее работе. Это влияет на гипофиз, который регулирует иммунные ответы организма. У пострадавших ослабляется иммунитет, повышается степень подверженности эпидемическим заболеваниям. Для предотвращения таких последствий важно употребление йодсодержащих продуктов, йод которых замещает радиоактивный йод в щитовидной железе.

Пектиновые вещества. Исследования, проведенные в последние годы, показали, что пектиновые вещества обладают способностью связывать (или обезвреживать каким-либо другим путем) некоторые радиоактивные вещества, например соединения свинца, цезия и кобальта.

Радиопротекторы

Витамин C . В связи с падением уровня иммунных реакций при поражении щитовидной железы радиоактивным йодом, важно предотвращение заражений вирусными заболеваниями и поддержка и восстановление иммунитета. Данная задача решает употреблением витаминов, решающую роль из которых играет витамин C, необходимый в значительных количествах.

Биофлавоноиды (вещества Р-витаминного действия) способствуют усвоению витамина C в организме. В последнее время было доказано, что отдельным представителям этой группы веществ свойственно противоопухолевое действие. Также флавоноиды защищают организм от поражения ионизирующими излучениями. Кроме того, витамин P уменьшает выраженную симптоматику лучевой болезни – уменьшает проницаемость и ломкость капилляров, их кровоточивость.

Бетаин . Наиболее доступный и эффективный продукт, служащий для профилактики онкологических заболеваний и помогающий выводить из организма радионуклиды и тяжелые металлы – красный краситель бетаин Он обеспечивает противоопухолевые свойства, тормозит рост рака и саркомы. Бетаин содержится только в красной столовой свекле. Еще в 1970 году японскими учеными был разработан и запатентовали препарат для лечения раковых опухалей на основе этого распространенного овоща.

Радиозащитными свойствами также обладают клетчатка (пищевые волокна) и каротин (провитамин A ).

Растения в п ротиворадиационном питании

Рассмотрим какие растения Томской области содержат вещества, уменьшающие влияние радиации на организм человека и используются медицине и противорадиционном питании.

Шиповник богат разнообразными витаминами и веществами. Он содержит пектиновые вещества, витамин C, биофлавоноиды, каротин. Применяется для комплексного лечения новообразований в качестве дополнительной терапии. Употребляются свежие плоды в любом виде, сухие и молотые, как отвар. В Томской области встречается почти повсеместно: по опушкам лесов на лесных суходольных и пойменных лугах, по берегам рек.

Облепиха. Плоды облепихи содержат уникальный комплекс витаминов, микроэлементов и других биологически активных веществ: витамин C, каротин, пектиновые вещества, биофлавоноиды. В коре облепихи содержится алкалоид серотонин (5-окситриптамин), задерживающий рост злокачественных опухолей. Применяется:

· при лучевом лечении рака пищевода – облепиховое масло внутрь;

· как противолучевое средство – плоды, сок, масло внутрь и наружно;

· в онкологической практике – спиртовые экстракты коры.

В Томской области облепиха в диком виде не встречается и выращивается только на приусадебных участках и в садоводческих товариществах.

Земляника. Плоды земляники лесной содержат йод, соли калия и клетчатку. Возможно использование в свежем виде, как нуклидовыводящее средство, но в больших количествах и при отсутствии аллергических реакций. Земляника растет в разреженных лесах, по опушкам и лесным лугам.

Очень хорошо выводят радионуклиды клюква, брусника и черника .

Брусника богата витамином C, биофлавоноидами, каротином. Используется как общеукрепляющее средство, восстанавливающее иммунитет. Брусника обитает по сосновым борам, а также в темнохвойных, смешанных с березой и осиной лесах. В Томской области встречается массивными зарослями.

Черника. Плоды черники содержат соли калия, флавоноиды, витамин C, содержащийся также и в листьях в большом количестве. Растет по сосновым борам, а также темнохвойным и смешанным, предпочитает более сырые места по сравнению с брусникой.

Красный сладкий перец. Эти овощи богаты витамином C, каротином, кальцием и обладают радиопротекторными свойствами.

Свекла. Корнеплод красной столовой свеклы содержит красный краситель бетаин и значительное число солей калия. Свекла является противолучевым средством. При лечении раковых опухолей свежий сок в большом количестве.

Морковь. Овощ содержит клетчатку и каротин, которым в особенности богаты листья растения. В лечении лучевой болезни и злокачественных опухолей используется так же, как и свекла.

Минусы в применении растений.

К сожалению не все, нужные для защиты от радиоактивных излучений, вещества содержатся в растениях в необходимом колличестве или эффективно усваиваются из растительных форм организмом человека. Так маленькое значение имеют растения в качестве источника солей кальция и фосфора. Кальций и фосфор плодов и ягод усваивается организмом человека хуже, чем соединения тех же элементов, поступающие с молочными продуктами. Это происходит, потому что усвоение фосфора и кальция идет в строгом соотношении с белком некоторыми другими веществами. Поэтому важно употребление разнообразной пищи, содержащей полный список витаминов, микро- и макроэлементов, других биологически активных веществ.


Опрос населения

Цель: Выявить группы населения, в рационе которых содержится минимум продуктов, уменьшающих радиационное воздействие.

Объект исследования : учащиеся и работники школы №198.

Задачи: Выяснить сколько человек в разных возрастных группах употребляют в своем рационе растения, снижающие влияние радиации на организм.

Описание: Из 8 наименований продуктов (шиповник, облепиха, земляника, черника, брусника, перец, морковь, свёкла) участникам было предложено выбрать те, которые они употребляют.

Статистическая обработка данных :

Всего опрошено 300 человек. Данные представлены в процентах.

Участники разделены на 4 возрастные группы:


1-4 класс

- 8-11класс

- 5-7 класс

Педагогический коллектив


Результат:

Выводы: проведя опрос, выявили, что группой населения, в рационе которой содержится минимум продуктов, уменьшающих радиационное воздействие, являются учащиеся 8-11 классов. Это объясняется тем, что за разнообразием рациона детей 1-7 классов следят родители. Педагоги сами понимают пользу разнообразного рациона. Старшеклассники предоставлены сами себе, не имеют свободного времени и не понимают смысл рационального питания.


Проверка эффективности растений, снижающих радиационное воздействие

Цель: Проверить на практике эффективность снижения радиационного воздействия растениями: шиповник, облепиха, брусника, морковь. И сравнить вред, наносимый радиацией девушкам и юношам, курящим и некурящим.

Объект исследования: Исходя из социологического опроса (см. выше), в эксперименте участвуют 6 человек из 8-11 классов.

Гипотеза: Мы предполагаем, что на детей, употребляющих растения: шиповник, облепиха, брусника, морковь радиационное воздействие будет меньше, чем на неупотребляющих. Также влияние радиации будет меньше на некурящих детей, чем на курящих, на юношей, чем на девушек.

Схема опыта:

В течение трех недель дополнительно к обычному рациону употребляли:

1. девушка – морковь

2. девушка – облепиху и чай с шиповником

3. девушка (не курящая) – бруснику.

Также в эксперименте участвовали:

4. Курящая девушка

5. Некурящий юноша

6. Курящий юноша.

Спустя установленное время у участников эксперимента Была взята кровь из вены (10 мл.). Взятую кровь (каждого участника), распределили по двум пробиркам по 5 мл.


В Северском биофизическом научном центре провели исследования на хромосомные аберрации (под руководством Васильевой Елены Олеговны)

Обработка полученных данных: ...................

Выводы: ............................


Выводы по исследовательской работе:

Проделав исследовательскую работу:

1. Изучили механизм влияния радиации на клетки организм.

2. Рассмотрели последствия влияния радиационного излучения на организм (на примере населения городов Хиросимы и Нагасаки).

3. Выявили вещества, позволяющие уменьшить вредное воздействие ионизирующего излучения, их специфика – деление на вещества, выводящие радионуклиды и устраняющие последствия облучения. Это витамины C, каротин, биофлавоноиды; минеральные вещества: кальций, калий, йод, магний, фосфор; органические вещества: клетчатка, пектиновые вещества, бетаин.

4. Выявили растения Томской области, содержащие эти вещества и используемые в лечении последствий радиационного облучения: шиповник, облепиха, земляника, черника, брусника, перец, морковь, свёкла.

5. Проведя опрос населения, выявили, что группой населения, в рационе которой содержится минимум продуктов, уменьшающих радиационное воздействие, являются учащиеся 8-11 классов.

7. Для распространения информации среди населения о необходимости употребления веществ, снижающие влияние радиации на организм, создана памятка с перечнем всех рекомендуемых продуктов(см. приложение.

Все выше сказанное позволяет говорить о выполнении поставленных задач и достижении целей.


Приложения

Название

Витамин C

Пектиновые вещества

Флавоноиды

Клетчатка

Химические

элементы

Шиповник

Облепиха

Рябина черноплодная

Земляника

йод, калий

Брусника

Смородина черная

Рябина обыкновенная

Петрушка


2.Перечень продуктов в рационе человека для ежедневной защиты от естественной радиоактивности.

Шиповник Молоко

Облепиха Сыр

Рябина черноплодная Творог

Земляника Яйца

Петрушка Печень

Клюква Рыба

Черника Кальмары

Брусника Морская капуста

Смородина черная

Рябина обыкновенная


Литература

2. Кузин А. М. серия Человек и окружающая среда Невидимые лучи вокруг нас – Москва.

3. Лекарственные растения Томской области под редакцией Мордовина Л. Г. – Томск, 1972

4. Пашинский В.Г. Лечение травами – Томск, 1989.

5. Петерсон Б.Е. Онкология – Москва, 1980.

6. Чистякова Н. П. Фармакология с рецептурой – Москва, 1968.

7. Шапиро Д. К., Михайловская В. А., Манциводо Н. И Дикорастущие плоды и ягоды – Минск, 1981.

8. Eric J. HALL Радиация и жизнь в переводе Харченко М. И. – Москва.

9. Краткий медицинский энциклопедический словарь.

10. Советский энциклопедический словарь под редакцией Прохорова А. М. – Москва, 1983.

11. Химический энциклопедический словарь под редакцией Кнунянц И. Л. – Москва, 1983.

Цели, задачи, актуальность..............................................................................2

Радиация и организм человека.........................................................................3

Влияние радиации на клетки организма.................................................3

Последствия влияния радиационного излучения...................................5

Восстановление клеток от повреждения генетического аппарата.......9

Вещества и элементы, снижающие влияние радиации на организм.........10

Растения в противорадиационном питании.................................................12

Минусы в применении растений...................................................................13

Опрос населения.............................................................................................14

Проверка эффективности растений, снижающих радиационное

воздействие.....................................................................................................16

Выводы............................................................................................................17

Приложения....................................................................................................18

Литература......................................................................................................20

ПОЛЕЗНАЯ РАДИАЦИЯ

Если бы Господь Бог сделал мне честь спросить

мое мнение при сотворении мира, то я бы ему

посоветовал сотворить его получше, а главное - попроще

КОРОЛЬ АЛЬФОНС КАСТИЛЬСКИЙ XIII ВЕК

Наверно, у каждого из нас неоднократно возникала мысль о том, насколько сложно и остроумно организована живая клетка. Кажется, она продумана до конца и так совершенна, что ее нельзя улучшить. В процессе эволюции миллионы раз были переработаны варианты оптимальных конструкций клетки И миллионы вариантов были забра­кованы Остались наиболее отработанные, законченные и совершенные образцы. Но за последние десятилетия уче­ные убедительно доказали возможность улучшения расте­ний и других организмов с помощью ионизирующей ра­диации и радиоактивных изотопов.

В Париже, в районе Жардеп до Плант, стоит неболь­шой дом Он - достояние Национального музея естествен­ной истории На его стене скромная доска, и на ней над­пись «В лаборатории прикладной физики Музея Анри Беккерель открыл радиоактивность 1 марта 1896 года». С тех пор прошло три четверти века Предполагал ли кто-нибудь даже из самых прозорли­вых соотечественников Беккереля, что семьдесят лет спу­стя радиоактивные изотопы станут широко использоваться в сельском хозяйстве, биологии, медицине? Что меченые атомы будут надежными помощниками человека при решении самых насущных задач? И что, наконец, с помощью проникающей радиации некоторых радиоактивных изото­пов можно будет повышать урожайность зерна?

Используя ионизирующую радиацию, действительно можно изменять в нужном для человека направлении жи­вые организмы

Несколько лет назад в Молдавии весной можно было встретить на дорогах автофургон с надписью на кузове" «Атом - миру» Это не простой грузовик, а передвижной облучатель для предпосевной обработки семян Его «атом- пое сердце» - большой контейнер с гамма-активным изо­топом цезия-137 Накануне сева автофургон выезжает в поле К нему подъезжает грузовик с семенами кукурузы Включается ленточпый транспортер Семена засыпаются в бункер с радиоактивным изотопом цезия Полностью изо- тарованные от непосредственного контакта с изотопом, се­мена в то же время облучаются гамма-лучами в нужной дозе Непрерывной струей бежит зерно через бункер По том оно попадает на другой транспортер и ссыпается в мешки на другой автомашине Предпосевное облучение се­мян закончено Семена можно высевать.

Для чего облучали семена кукурузы? Предпосевное об­учение семян - это метод повышения урожайности сель­скохозяйственных культур С его помощью можно уско­рить созревание растений и улучшить их полезные каче­ства.

На лабораторном столе стоят десять горшков с проро­стками кукурузы различной высоты Под крайним левым подпись: «Контроль», под каждым из остальных цифры- 100, 300, 500, 800.. И так до 40 000. В лабораторном жур­нале записано «Высота проростков кукурузы при разных дозах облучения на 13-й день вегетации».

При облучении семян в дозе 100 и 300 рентген высота проростков такая же, как в контрольной группе При дозе облучения 500 рентген растения выше контроля в полто­ра раза. Но потом, по мере увеличения дозы, величина проростков уменьшается При дозе 8000 рентген растения кажутся карликами При дозе 40 000 их еле видно.

Через несколько страниц в том же лабораторном жур­нале вклеена фотография Это корни тех же растений Почти такая же закономерность При определенной дозе гамма-лучей - резкое увеличение роста, а потом посте­пенное уменьшение При больших дозах рост корней резко затормаживается.

Сначала ставят опыты в лабораторных условиях Потом опыты повторяют в поле. Опыты в поле - это как гене­ральная репетиция в театре, как последний экзамен, после которого результаты экспериментальных исследований будут внедрены в практику Экспериментаторы облучали семена кукурузы сортов «Стерлинг» и «Воронежская-76», которые в Московской области выращивают для получения силосной массы Опыты в поле в течение трех лет показа­ли, что облучение семян в дозе 500 рентген увеличивает выход зеленой массы кукурузы на 10-28 процентов Си­лос, полученный из таких растений, содержит больше бел­ка, жиров, безазотистых веществ, клетчатки, углеводов

А если облучить семена редиса.

На столе экспериментатора два пучка редиса одного сорта. Количество редиса в каждом пучке одинаково Но редис слева значительно толще и мясистее По сравнению с ним редис справа кажется худосочным. А ведь правый пучок - это обычный, так сказать, «нормальный» редис Упитанный родственник слева - это редис, выращенный из облученных семян При облучении семян этого сорт,! гамма-лучами в дозе 500 рентген урожай повысился на 37 процентов! Собрать 100 или 137 кг редиса - существен­ная разница И это из одного количества семян, на одних землях и при одном и том же уходе А затраты на облуче­ние крайне невелики

У других сортов редиса - «Рубин», «Розовый с белым кончиком», «Сакс» - урожайность повышалась при облу­чении в дозе 1000 рентген А облученный «Сакс» был к то­му же и сочнее и вызревал раньше обычного на 5-6 дней Предпосевное облучение семян «Рубина» не только повы­шало урожай корнеплодов, но и увеличивало в них содер­жание витамина С. С помощью ионизирующей радиации в корнеплодах можно увеличить и содержание витамина А. Так, после облучения семян моркови сорта «Нантская» в дозе 4000 рентген урожайность корнеплодов по отношению к контролю увеличилась на 26 процентов, а запас кароти­на - растительного пигмента, который в организме чело­века превращается в витамин А,- на 56.

А кукуруза? Облучение семян в дозе 500 рентген уве­личивало урожай зеленой массы до 28 процентов

Стимулирующее действие предпосевного облучения се­мян доказано для огурцов, томатов, свеклы, капусты, са­люта, картофеля, хлопка, ржи, ячменя...

Ученые заметили одну особенность. Доза ионизирую­щей радиации, вызывающая эффект стимуляции, различ­на не только для разных видов растений, но даже для раз­ных сортов одного вида. Более того, она оказалась не оди­наковой для одного и того же сорта, высеваемого в разных географических зонах.

Так стимулирующая доза облучения для огурцов сорта «Нежинские», высеваемых в Московской области, равняет­ся 300 рентген, а для получения такого же результата в Азербайджане была необходима доза около 2000- 4000 рентген.

Возьмем семена кукурузы Много семян. Облучим их при одинаковых условиях дозой гамма-лучей, которая вы­зывает стимуляционный эффект. Разделим их на четыре равные группы - по 1000 штук в каждой Одну группу по­сеем сразу после облучения, вторую - через неделю, тре­тью - через две, четвертую - через месяц. Теперь будем терпеливо ждать Семена взошли, растения начали разви­ваться. Но что это? Быстрее других развиваются расте­ния, высеянные непосредственно после облучения. У семян, которые были высеяны через неделю после облуче­ния, стимуляционный эффект был выражен меньше. У се­мян, высеянных через 2 недели после лучевой обработки, ускорение развития почти не наблюдалось. Семена, выдер­жанные после облучения в течение месяца, прорастали, но стимуляционного эффекта не имели. Значит, при хра­нении какое-то таинственное вещество, какой-то стиму­лятор медленно исчезал.

В чем же дело?

Мы вступаем в область, где факты еще дружат с пред­положениями, где еще многое не исследовано. Установле­но, что после облучения в семенах образуются очень ак­тивные осколки молекул, называемые радикалами Опи способны вступать в необычные для здорового организма реакции. И вот оказалось, что после облучения семян ко­личество радикалов со временем постепенно убывает. Про­ходит несколько дней, и радикалы исчезают полностью. Чем выше температура и влажность, при которой хранят­ся семена, тем радикалы исчезают быстрее

Что же происходит, когда семена попадают во влаж­ную, прогретую солнцем почву? Питательные вещества, содержащиеся в семенах, начинают переходить в раство­римую форму и транспортируются к зародышу. В так на­зываемом алейроновом слое семени активизируются окис­лительные процессы, и начинается выработка соединений, богатых энергией Зародыш пробуждается, его клетки на­бухают и начинают делиться. Наступают процессы роста и развития проростков. Клетки начинают делиться, и им нужен строительный материал. Активность многих фер­ментов в результате облучения значительно возрастает. И вот при облучении семян окислительные процессы начи­нают протекать значительно интенсивнее. А это приводит к более быстрому развитию и ускорению всхожести семян, к их прорастанию. Растения становятся более мощными.

Не так давно в журнале «Курьер», который издается ООН, была напечатана статья. В ней говорилось, что каж­дый третий крестьянин в Африке работал фактически на птиц, грызунов, насекомых-вредителей и микропара­зитов.

За точность зтих цифр, естественно, поручиться труд­но, но то, что потери от вредителей огромны,- факт.

Специалисты подсчитали сельскохозяйственные вре­дители уничтожают за год столько зерна, что им можно было бы прокормить 100 миллионов человек.

Чем может помочь ионизирующая радиация сельскому хозяйству в борьбе с вредителями?

Вы уже знаете: различные виды растений обладают различной радиочувствительностью Некоторые - доволь­но высокой Насекомые, как правило, высокорадиоустойчивы. Среди них есть даже своеобразные чемпионы радио­устойчивости. Например, скорпионы. Но яйца и личинки насекомых оказались более радиочувствительными. И вос­производящие клетки насекомых тоже более чувствитель­ны к облучению.

Схема борьбы с насекомыми-вредителями проста Через бункер, заряженный радиоактивным изотопом, пропус­кается по конвейеру зерно За определенный промежуток времени оно получает необходимую для гибели вреди­телей дозу ионизирующей радиации Такое зерно, конеч­но, не используют как посадочный материал Но для пи­тания людей оно совершенно безвредно После облучения зерно поступает в хранилище - опасный вредитель ему уже не угрожает Этими же приемами можно бороться с вредителями сухих фруктов - насекомыми и их личинка­ми, облучая «будущие компоты» гамма-лучами в дозе до 50 ООО рентген А в Канаде предложили метод лучевой борьбы с сальмонеллами, заражающими яичный порошок Знаете ли вы о методе «стерильпых самцов»? Ученые разработали его сравнительно недавно Насекомые, облу­ченные понтирующей радиацией в определенный период ра шития, неспособны давать потомство «Стерильные сам­цы» спариваются с нормальными самками. Однако самка потомство не приносит Чем больше самцов будет стерили­зовано, тем больше возможностей, что самки не дадут по­томства Если стерилизованных насекомых будет много в течение нескольких поколений, то потомство резко сокра­тится В некоторых странах обитает опасный вредитель - так называемая мясная муха Она откладывает свои яйца в рапы теплокровных животных Из яиц развиваются ли­чинки, которые вызывают заболевание и даже гибель домашнего скота, диких зверей и дичи Мясная муха нано­сит большой вред хозяйству И тогда решили испробовать метод лучевой стерилизации на мясной мухе Построили «мушиную» фабрику, на которой разводили и стерилизова­ли мух Стерилизованных насекомых выпускали на зара­женную местность Результат сказался быстро Заболевание и падеж скота резко уменьшились Затраты на «мушиную» фабрику не только окупились в первый год, но и принесли равную по сумме затрат прибыль. В США на острове Куракоо, площадью в 435 квадратных километров, выпусти­ли около 2000 стерильных самцов мясной мухи на один квадратный километр На острове мясная муха практи­чески уничтожена.

Идея консервирования продуктов возпикла давно Продукты консервировали древние египтяне и ипки На­верное, самый древний способ сохранения продуктов - высушивание их па солнце Со временем способы консер­вирования менялись Сегодня холодильник имеется почти в любой городской квартире Но самый современный спо­соб сохранения пищевых продуктов - консервирование их с помощью проникающих излучений Если облучать, например, свежее мясо гамма-лучами в дозе 100000 репт- геп, то срок его храпепия на складе удлиняется в пять раз Если облученпое мясо хранить при температуре около нуля градусов, то оно сохраняется в течение нескольких месяцев, не теряя питательных и вкусовых качеств С по­мощью радиации удлиняются сроки хранения свежей рыбы Облученная рыба в рефрижераторах сохраняет свои вкусовые качества до 35 дней А без лучевой обработки при тех же условиях хранения - 7 - 10 дней.

Сейчас ищут способ консервировать с помощью гамма- лучей икру, молоко, фрукты И даров моря- крабов, устриц, креветок

Хорошие результаты дает облучепие ягод и фруктов Облученная клубника, хранившаяся в рефрижераторе при температуре +4 градуса, длительное время не теряла ни свежести, ни аромата Даже опытные дегустаторы и экс­перты не могли установить, какие из ягод были облучены в «консервирующих» дозах А грибы шампиньоны? Они обладают прекрасными вкусовыми качествами И их мож­но выращивать искусственно в течение всего года Но при хранении грибы быстро портятся теряют свежесть и вку­совые качества, сохпут и шляпка их разворачивается, как у старых грибов Облученные шампиньоны в течение дли тельного хранения выглядели так, будто их только что принесли из парника - старение грибов резко затормажи­валось, шляпки их были круто закручепы, как у молодых грибов.

Недавно в печати появилось сообщение о лучевом коп- сервировании цветов. Знаменитые голландские тюльпаны, облученные в определенной дозе, помещенные в пакет, на­дутый углекислым газом, удобны в транспортировке и мо­гут храниться длительный срок Казалось, что они только что сорваны с грядки, настолько свежими были их лепе­стки.

Особенно выгодно с помощью радиации увеличивать срок хранения овощей.

Картофель имеет один серьезный недостаток: при хра­нении он прорастает, клубни сморщиваются и теряют свои вкусовые качества. Над проблемой лучевой консервации картофеля начали работать многие ученые в различных научно-исследовательских институтах нашей страны. Мно­гочисленные опыты показали: облучение клубней в дозе 10 ООО рентген резко затормаживает или прекращает ве­сеннее прорастание картофеля и не понижает сопротивляе­мости его к заболеваниям. Вкусовые качества облученно­го картофеля не ухудшаются. Опытные дегустаторы не на­шли никаких изменений в блюдах, приготовленных из такого картофеля.

Проблема лучевой консервации интенсивно разрабаты­вается во всем мире. И это закономерно Слишком очевид­ные экономические выгоды она несет. Некоторые методы лучевого консервирования уже разрешены для практиче­ского использования. Другие еще не вышли из стен лабо­раторий И самое главное - идут многолетние опыты, ко­торые должны доказать: облученные продукты безвредны для человека.

На растениях легче экспериментировать, чем на живот­ных. Работая с облучением семян, можно ставить опыты сразу на многих тысячах биологических объектах. И поэто­му ученому заметно помогает статистика Да и экономиче­ски такой опыт значительно выгоднее.

А использовалась ли ионизирующая радиация для практических целей в животноводстве?

Животные намного чувствительнее к действию прони­кающей радиации, чем растения В нашей стране на одной из современных птицефабрик был поставлен такой опыт В течение нескольких часов в процессе инкубации кури­ные яйца облучали в дозе 1-2 рентген. Такие незначи­тельные дозы радиации оказали стимулирующее действие: количество вылупившихся цыплят увеличивалось, куры из облученных яиц обладали большей яйценоскостью.

Курам «повезло» или стимулирующее действие малых доз ионизирующей радиации - общая закономерность?

Наверное, тут таятся и общие закономерности Во вся­ком случае, врачи всего мира давно признают целебное действие радоновых ванн для человека.

Итак, ионизирующая радиация радиоактивных изотопов может разумно использоваться человеком и в сельском хо­зяйстве. Но любознательный читатель, наверно, уже заме­тил, что речь шла о внешних источниках проникающих лучей Как правило, о гамма-лучах, испускаемых радиоак­тивным кобальтом. Но существует огромное количество радиоактивных изотопов, которые испускают, например, «мягкие» бета-лучи, энергия которых невелика. Радиоак­тивный углерод С" и радиоактивная сера в3®, биологически наиболее важные элементы, обладают именно таким, «мягким», излучением. Энергия проникающего излучения другого биологически важного изотопа - радиоактивного фосфора Р3! значительно выше, но и она «мягче» по срав­нению с «жесткими» гамма-лучами кобальта Со0.

Возможности использования таких «меченых» атомов в народном хозяйстве тоже велики. Приведем примеры.

Чтобы врага победить, его надо знать. Чтобы успешно бороться с опасными вредителями сельского хозяйства, с вредными насекомыми, надо хорошо изучить их жизнь.

Ученые метили радиоактивным фосфором таких опас­ных насекомых, как саранча, малярийный комар, а также фруктовую муху. Этим способом определили скорость пе­релета саранчи и дальность ее распространения из главных очагов размножения; выяснили протяженность перелетов малярийных комаров. Фруктовая муха оказалась относи­тельным домоседом. Ее метили радиоактивным фосфором л выпускали в апельсиновой роще. При благоприятных усло­виях фруктовые мухи не удалялись от места обитания больше чем на несколько сот метров.

Полученные сведения позволили наметить расположе­ние заградительных зон и разработать систему обороны и борьбы с этими насекомыми.

Инсектициды - яды для насекомых, один из современ­ных способов борьбы с ними. Введем в эти химические со­единения радиоактивную метку. Индикатор сразу позволя­ет ответить на целый ряд важных вопросов. Как ведут себя эти соединения в организме насекомых, почему они ядовиты для них? Как сделать их избирательными по дей­ствию - не вредными для человека, растении и полезных насекомых? Не попадают ли яды в сельскохозяйственные продукты? Когда яды теряют свою токсичность?

На наших древнейших друзьях - пчелах были постав­лены опыты. Например, кормили радиоактивным фосфором рабочую пчелу, и она становилась меченой. В улей поме­щали счетчик радиоактивных частиц И вот удалось устано­вить, сколько раз в день вылетает на работу рабочая пче­ла, каков ее рабочий день и какова скорость полета Или по­ступали по-другому Подслащенные сахаром растворы с подмешанным к ним радиоактивным фосфором помещали на какое-нибудь поле Прилетающие на него пчелы, есте­ственно, метились И тогда можно было точно определить, какие поля пользуются у пчел наибольшей популярно­стью А отсюда и практические решения, которые помогут увеличить продукцию неутомимых тружеников.

Радиоактивные изотопы используются во всех исследо­ваниях по биохимии и физиологии насекомых. Значение этих работ понятно Изучив, например, деятельность гор­монов и ферментов, управляющих развитием и поведением полезных насекомых, можно будет использовать насекомых в интересах человека.

Ученые были поражены, когда узнали, с какой скоро­стью протекают в растениях некоторые биохимические процессы.

В коробочку из плексигласа помещали несколько листь­ев растения, впускали туда определенное количество ра­диоактивной по углероду углекислоты и оставляли растение на солнечном свету В результате процессов фотосинтеза углекислота усваивалась, переходила в состав органиче­ских веществ и транспортировалась в различные участки растения Через равные интервалы времени брали образцы и измеряли их радиоактивность И вот оказалось, что ско­рость передвижения вновь синтезированных соединений с восходящим током весьма значительна: дпем на солнечном свету - 50-100 сантиметров в минуту Раньше считали, что весь углерод в оргапических веществах образуется растепием из углекислоты воздуха, хотя его там сотые до­ли процепта Только сравнительно недавно с помощью меченых атомов удалось доказать, что углекислота и соли угольной кислоты, содержащиеся в почве, интенсивно.

Радиоактивным фосфором можно пометить насекомых и растения.

используются растением. Они активно транспортируются из корней в листья. Там, в результате фотосинтеза, из них образуются углеводы и идет синтез органических ве­ществ. А отсюда следовал практически важный вывод: для повышения урожайности необходимо обогащать почву углекислотой - вносить в почву соли угольной кислоты. Можно добавлять в почву и так называемые зеленые удоб­рения Например, запахивать многолетние травы. Пример­но через 20-30 дней начинается выделение углекисло­ты, которое продолжается все лето.

Так использование метода радиоактивных индикаторов оказалось полезным для науки об удобрениях растений.

Чем и как выгоднее подкармливать растения? В какие сроки? В какой форме вносить удобрения? Как на них влияют климатические условия? Как они транспортируют­ся в растениях и где усваиваются?

Меченый по фосфору суперфосфат, гидроксилапатит и другие удобрения вносили в почву. И оказалось, что куку­руза через 2,5 месяца после посадки лучше всего усваивала фосфор из трехкальциевого фосфата, хуже из суперфосфа­та и еще хуже из гидроксилапатита. Обнаружили, что хлопчатник особенно нуждается в подкормке фосфором в возрасте 10-20 дней и во время цветения.

С помощью меченых атомов определили роль в жизни растений микроэлементов - кобальта, марганца, цин­ка, меди. Достаточно, например, внести в почву 1-3 ки­лограмма бора на гектар пашни, и урожайность клевера резко возрастет. Марганец повышает урожайность сахар­ной свеклы, медный купорос - урожай зерновых на тор­фяных почвах.

Однажды на лекции по радиационной биохимии ко мне подошла студентка биологического факультета Москов­ского университета. Она жаловалась, что в наше время до­казана невозможность чуда. «Была какая-то надежда,- говорила она,- когда в печати появились сообщения о су­ществовании «снежного человека» или предположение, что на Землю упал не тунгусский метеорит, а прилетал кос­мический корабль с неведомых планет неземной цивили­зации. Так нет тебе! Дотошные ученые быстро доказали, что этого быть не может».

Но разве исследователи не нашли маленькое чудо, ко­гда установили, что отдельные деревья в лесу могут обме­ниваться между собой питательными веществами через сросшиеся корни? В дубовой роще радиоактивный броми­стый калий, введенный в дерево, через 3 дня обнаружи­вался у пяти рядом расположенных дубов!

Особенно часто используются химические соединения, меченые радиоактивным углеродом, фосфором, серой. И конечно, микроэлементы и такие соединения, как калий, натрий, железо... Но нужно хорошо представлять задачу исследования, чтобы правильно выбрать радиоизотоп На­пример, период полураспада радиоактивного углерода С" около 6000 лет. Этот радиоизотоп слишком «молод» для изучения геологических процессов, но он незаменим для исследования процессов обмена веществ в организме жи­вотных.

Пользуясь радиоактивным углеродом, можно узнать, какие условия питания необходимы для достижения мак­симальной продуктивности животных или как усваиваются питательные корма и что нужно ввести в рацион коров, чтобы увеличить удои молока.

Без хорошей теории не может быть и хорошей практи­ки Возможности метода радиоактивных изотопов для ре­шения самых сложных теоретических вопросов биохимии, физиологии, биофизики безграничны Ученый в течение одного рабочего дня не успеет прочитать даже одни заго­ловки статей и исследований, в которых рассказывается об использовании радиоактивных изотопов для различных биологических целей Даже специалистов нередко удивля­ют исследования, в которых используют меченые атомы.

Иногда сложные биологические задачи решаются про­сто Иногда наоборот: казалось бы, простое биологическое явление расшифровывается путем многолетней и кропот­ливой работы

Например, из каких составных, простейших частей об­разуется коровье молоко и в каких тканях?

Вопрос звучит просто, но для ответа на него потребо­вались усилия многих десятков ученых в течение многих

Три четверти века назад о существовании радиоактив­ных изотопов знало всего несколько человек. Сегодня «по­лезная радиация» стала достоянием миллионов людей. Альберт Эйнштейн сказал: «Явления радиоактивности - самая революционная сила технического прогресса за все время с тех пор, как доисторический человек открыл огонь».

Евгений Романцев. "Рожденная атомом"

В целом, растения более устойчивы к радиационному воздействию, чем птицы и млекопитающие. Облучение в небольших дозах может стимулировать жизнедеятельность растений - рисунок 3 - прорастание семян, интенсивность роста корешков, накопление зелёной массы и др. Нужно отметить, что дозовая кривая, приведенная на этом рисунке безусловно повторяется в опытах в отношении самых разнообразных свойств растений для доз радиационного воздействия, вызывающих угнетение процессов. В отношении стимуляции дозовая характеристика процессов не так очевидна. Во многих случаях проявление стимуляции на живых объектах не наблюдается.

Рисунок 3 - Зависимость числа проросших глазков картофеля сорта от дозы облучения

Большие дозы (200 - 400 Гр) вызывают снижение выживаемости растений, появление уродств, мутаций, возникновение опухолей. Нарушения роста и развития растений при облучении в значительной степени связаны с изменениями обмена веществ и появлением первичных радиотоксинов, которые в малых количествах стимулируют жизнедеятельность, а в больших - подавляют и нарушают её. Так, промывка облученных семян в течение суток после облучения снижает угнетающий эффект на 50-70%.

У растений лучевая болезнь возникает под воздействием различных видов ионизирующих излучений. Наиболее опасны альфа-частицы и нейтроны, нарушающие нуклеиновый, углеводный и жировой обмен в растениях. Очень чувствительны к облучению корни и молодые ткани. Общий симптом лучевой болезни - задержка роста. Например, у молодых растений пшеницы, фасоли, кукурузы и других задержка роста наблюдается через 20--30 ч после облучения дозой более 4 Гр. В то же время разными исследователями показано, что облучение воздушно-сухих семян многих культур дозами 3-15 Гр не только не приводит к угнетению роста и развития растений, а напротив способствует ускорению многих биохимических процессов. Это выражалось в ускорении развития и увеличении урожайности.

Установлены видовые, сортовые и индивидуальные внутрисортовые различия в радиочувствительности растений. Например, симптомы лучевой болезни у традесканции возникают при её облучении дозой 40 р, у гладиолуса - 6000 р. Смертельная доза облучения для большинства высших растений 2000-3000 р (поглощенная доза порядка 20-30 Гр), а низших, например дрожжей, 30 000 р (300 Гр). При лучевой болезни повышается также восприимчивость растений к инфекционным болезням. Пораженные растения нельзя использовать в пищу и на корм скоту, так как они могут вызвать лучевую болезнь у человека и животных. Методы защиты растений от лучевой болезни разработаны недостаточно.

Солеустойчивость

Растения, устойчивые к засолению, называют галофитами (от греч. galos - соль, Phyton - растение). Они отличаются от гликофитов - растений незасоленных водоемов и почв - рядом анатомических и метаболических особенностей. У гликофитов при засолении снижается рост клеток растяжением, нарушается азотный обмен и накапливается токсичный аммиак.

Все галофиты делят на три группы:

1. Настоящие галофиты (эугалофиты) - наиболее устойчивые растения, накапливающие в вакуолях значительные количество солей. Поэтому они обладают большой сосущей силой, позволяющей поглощать воду из сильно засоленной почвы. Для растений этой группы характерна мясистость листьев, которая исчезает при выращивании их на незасоленных почвах.

2. Солевыделяющие галофиты (криногалофиты), поглощая соли, не накапливают их внутри тканей, а выводят из клеток на поверхность листьев с помощью секреторных железок. Выделение солей железками осуществляется с помощью ионных насосов и сопровождается транспортом больших количеств воды. Соли удаляется с опадающими листьями. У некоторых растений избавление от избытка солей происходит без поглощения больших количеств воды, так как соль выделяется в вакуоль клетки-головки листового волоска с последующим ее обламыванием и восстановлением.

3. Соленепроницаемые галофиты (гликогалофиты) растут на менее засоленных почвах. Высокое осмотическое давление в их клетках поддерживается за счет продуктов фотосинтеза, а клетки малопроницаемы для солей.

Солеустойчивость растений увеличивается после предпосевного закаливания семян. Семена замачивают один час в 3 % растворе NaCl с последующим промыванием водой в течение 1,5 часа. Этот прием повышает устойчивость растений к хлоридному засолению. Для закалки к сульфатному засолению семена в течение суток вымачивают в 0,2 %-ном растворе сульфата магния.

Различают прямое и косвенное действие радиации на живые организмы. Прямое действие энергии излучения на молекулу переводит ее в возбужденное или ионизированное состояние. Особенно опасны повреждения структуры ДНК: разрывы связей сахар-фосфат, дезаминирование азотистых оснований, образование димеров пиримидиновых оснований. Косвенное действие радиации состоит в повреждениях молекул, мембран, органоидов клеток, вызываемых продуктами радиолиза воды. Заряженная частица излучения, взаимодействуя с молекулой воды, вызывает ее ионизацию. Ионы воды за время жизни 10 -15 - 10 -10 сек способны образовать химически активные свободные радикалы и пероксиды. Эти сильные окислители за время жизни 10 -6 - 10 -5 сек могут повредить нуклеиновые кислоты, белки-ферменты, липиды мембран. Первоначальные повреждения усиливаются при накоплении ошибок в процессах репликации ДНК, синтеза РНК и белков.



Устойчивость растений к действию радиации определяется следующими факторами:

1. Постоянное присутствие ферментных систем репарации ДНК. Они отыскивают поврежденный участок, разрушают его и восстанавливают целостность молекулы ДНК.

2. Наличие в клетках веществ – радиопротекторов (сульфгидрильные соединения, аскорбиновая кислота, каталаза, пероксидаза, полифенолоксидаза). Они ликвидируют свободные радикалы и пероксиды, возникающие при облучении.

3. Восстановление на уровне организма обеспечивается у растений: а) неоднородностью популяции делящихся клеток меристем, которые содержат клетки на разных фазах митотического цикла с неодинаковой радиоустойчивостью, б) присутствием в апикальных меристемах покоящихся клеток, которые приступают к делению при остановке деления клеток основной меристемы, в) наличием спящих почек, которые после гибели апикальных меристем начинают активно функционировать и восстанавливают повреждение.

Радиоактивность – это самопроизвольный распад атомных ядер некоторых элементов, приводящий к изменению их атомного номера и массового числа Ионизирующие излучения – любые излучения, взаимодействия которых со средой приводят к образованию электрических зарядов разных знаков. Видимый свет и ультрафиолетовое излучение к ионизирующим излучениям не относятся C. 1

Типы ионизирующих излучений альфа (α)-поток положительно заряженных частиц (α)(атомов гелия), движущихся со скоростью около 20000 км/с бета (β)-поток отрицательно заряженных частиц (β)(электронов), движущихся со скоростью света гамма (γ)-излучение – коротковолновое магнитное (γ)излучение, близкое по свойствам к рентгеновскому. Распространяется со скоростью света, в магнитном поле не отклоняется, характеризуется высокой энергией – от нескольких тысяч до нескольких миллионов электронвольт рентгеновское излучение, как и γ-излучение, не излучение имеет массы и электрического заряда. γ-лучи испускаются ядром, обычно в комбинации с α- или β-эмиссией, в то время как рентгеновские лучи исходят от электронной оболочки. γ- и рентгеновские лучи имеют короткие длины волн и высокую проникающую способность C. 2

Атом состоит из ядра и окружающего электронного "облака". Находящиеся в электронном облаке электроны несут отрицательный электрический заряд. Протоны, входящие в состав ядра, несут положительный заряд. В любом атоме число протонов в ядре в точности равно числу электронов в электронном облаке, поэтому атом в целом – нейтральная частица, не несущая заряда. Атом может потерять один или несколько электронов или наоборот – захватить чужие электроны. В этом случае атом приобретает положительный или отрицательный заряд и называется ионом. Кроме протонов, в состав ядра большинства атомов входят нейтроны, не несущие никакого заряда. Масса нейтрона практически не отличается от массы протона. Вместе протоны и нейтроны называются нуклонами (от латинского nucleus – ядро). C. 3

Сумма тяжелых частиц (нейтронов и протонов) в ядре атома какого-либо элемента называется массовым числом и обозначается буквой А. A=Z+N Здесь A – массовое число атома (сумма протонов и нейтронов), Z – заряд ядра (число протонов в ядре), N – число нейтронов в ядре. Природа устроена так, что один и тот же элемент может существовать в виде двух или нескольких изотопов. Изотопы отличаются друг от друга только числом нейтронов в ядре (числом N). Поскольку нейтроны практически не влияют на химические свойства элементов, все изотопы одного и того же элемента химически неотличимы. Нейтроны выбрасываются элементами, которые распадаются в результате самопроизвольного расщепления. В тканях нейтроны вызывают ионизацию не прямо, а путем выброса протона из ядра водородного атома и путем активации элементов через нейтронный захват, приводя в дальнейшем к γ-излучению. C. 4

Непосредственно ионизирующие излучение - излучение заряженных частиц (α-, β- и др.), которые, попадая в облучаемую среду, сами ионизируют ее атомы и молекулы Косвенно ионизирующие излучения (рентгеновское, γ-, нейтронное и др.) сами не производят ионизацию, при попадании в среду они взаимодействуют с атомом (атомным ядром или электронами его оболочки), передают энергию электрону (вторичному электрону) или атомному ядру (ядру отдачи). В дальнейшем ионизацию производят вторичный электрон или ядро отдачи C. 5

Радиационный фон Земли складывается из трех основных компонентов: vкосмическое излучение vестественные радионуклиды, содержащиеся в почве, воде, воздухе и других объект ах окружающей среды vискусственные радионуклиды, радионуклиды образовавшиеся в результате человеческой деятельности (например, при ядерных испытаниях), радиоактивные отходы, отдельные радиоактивные вещества, используемые в медицине, технике, сельском хозяйстве C. 6

КОСМИЧЕСКОЕ ИЗЛУЧЕНИЕ Первичное Вторичное Первичное излучение включает: первичное галактическое излучение, первичное солнечное излучение, излучение заряженных частиц, захваченных магнитным полем Земли (радиационный пояс Земли). Первичное галактическое излучение состоит на 90% из протонов высоких энергий и на 10% – ионов гелия. C. 7

Первичное солнечное излучение происходит в виде вспышек на Солнце, что сопровождается освобождением большого количества энергии в области видимого, ультрафиолетового и рентгеновского спектров излучения. Наиболее сильные вспышки сопровождаются выбросом большого количества заряженных частиц, главным образом протонов и α-частиц. Первичное солнечное излучение обладает относительно низкой энергией, поэтому не приводит к существенному увеличению дозы внешнего излучения на поверхности Земли. Радиационный пояс Земли состоит из протонов и электронов с небольшим содержанием α-частиц, которые захватываются магнитным полем Земли и двигаются по спирали вокруг его силовых линий. C. 8

Вторичное космическое излучение является следствием образования космогенных радионуклидов. Последние возникают при взаимодействии частиц вторичного космического излучения с ядрами различных атомов, C. 9 присутствующих в атмосфере.

Естественные радионуклиды К естественным радионуклидам относятся космогенные радионуклиды, главным образом 3 H, 7 Be, 14 C, 23 Na, 24 Na и радионуклиды, присутствующие в объектах окружающей среды с момента образования Земли. Основным источником облучения человека и загрязнения пищевых продуктов являются 40 К, 238 U, 232 Th – радионуклиды земного происхождения. Искусственные радионуклиды Испытание ядерного оружия – один из самых опасных источников радиоактивного загрязнения окружающей среды. C. 10

Основные источники загрязнения окружающей среды искусственными радионуклеидами испытание ядерного оружия добыча и переработка урановых и ториевых руд обогащение урана изотопом 235 U, т. е. получение уранового топлива работа ядерных реакторов переработка ядерного топлива с целью извлечения радионуклидов для нужд народного хозяйства хранение и захоронение радиоактивных отходов C. 11

Прямое повреждающее действие радиации на растения ü Состоит в радиационно-химических превращениях молекул в месте поглощения энергии излучения ü Поражающее действие связано с ионизацией молекулы ü Для клетки наиболее опасно нарушение облучением уникальной структуры ДНК ü Происходят разрывы связей сахар-фосфат, дезаминирование азотистых оснований, образование димеров пиримидиновых оснований и т. д. C. 12

Непрямое повреждающее действие радиации на растения Состоит в повреждениях молекул, мембран, органоидов, клеток, вызываемых продуктами радиолиза воды. Заряженная частица излучения, взаимодействуя с молекулой воды, вызывает ее ионизацию: γ → Н 2 О+ + ee- → Н 2 О - Ионы воды за время жизни 10 -15– 10 -1 с способны образовывать химически активные свободные радикалы и пероксиды: Н 2 О+ → Н+ +ОН Н 2 О- → Н+ +ОН ОН+ОН → Н 2 О 2 В присутствии растворенного в воде кислорода возникает также мощный окислитель НО 2 и новые пероксиды НО 2+Н → Н 2 О 2 и т. д. Эти сильные окислители за время жизни 10 -6 – 10 -5 с могут повредить многие биологические важные молекулы, что также способствует лучевому поражению молекул и структур клетки C. 13

Гормезис - стимулирующее влияние слабых воздействий на биологические объекты различных агентов, повреждающих при больших дозах Природный радиационный фон участвует Øв снятии покоя семян Øв увеличении прорастаемости неполноценных семян Øв делении растительных клеток и тем самым в росте и развитии проростков, их лучшем укоренении Øв ускорении синтеза как основных макромолекул растения, так и продуктов вторичного синтеза (хлорофилла, каротиноидов, антоцианов и др.) Øособое значение имеет для тенелюбивых растений, растений Севера, в условиях сокращенного светового дня C. 14

Основные этапы радиационного повреждения клеток и тканей (по Цирклю): 1) передача энергии ионизирующего излучения молекулам воды, образование ионов; 2) образование свободных радикалов; 3) образование пероксидов; 4) реакции пероксидов с геном определяющего значения; 5) суммирование инактиваций нескольких важных генов, ведущее к изменению состояния генома; 6) утрата генами способности контролировать синтез своих продуктов; 7) невозможность осуществления митоза. C. 15

Основные этапы радиационного повреждения клеток и тканей (Бак, Александер): 1) поглощение энергии ионизирующего излучения; 2) появление ионизированных и электронновозбужденных молекул; 3) индуцирование изменений в молекулах; 4) развитие биохимических повреждений; 5) формирование субмикроскопических повреждений; 6) проявление видимых повреждений клеток; 7) гибель клетки. C. 16

Нарушение коррелятивных физиологических связей в растительном организме при действии ионизирующей радиации (по Гродзинскому, 1989) Исходные повреждения биологической системы Инактивация меристемных клеток Изменения клеточных потоков Появление аномальных веществ, обладающих биологической активностью Нарушения коррелятивных связей в растительном организме Нарушения физиологических и, биохимических процессов Отдаленные последствия облучения C. 18

Механизмы устойчивости растений к действию радиации на молекулярном уровне Степень радиационного повреждения молекул ДНК в клетке уменьшают системы восстановления ДНК, независимые или зависимые от света. Системы темновой репарации (независимой от света), постоянно присутствующие в клетке, отыскивают поврежденный участок, разрушают его и восстанавливают целостность молекулы ДНК. Под влиянием света ферментативным или неферментативным путем устраняются димеры пиримидиновых оснований, возникающие в ДНК при действии ультрафиолетового света или ионизирующего излучения. Это способствует уменьшению повреждений (изменений) и в хромосомах. C. 20

Клеточные механизмы устойчивости растений к действию радиации Радиопротекторы гасят свободные радикалы, возникающие при облучении, создают локальный недостатка кислорода или блокируют реакции с участием продуктов – производных радиационнохимических процессов Функцию радиопротекторов выполняют: SH-соединения (глутатион, цистеин и др.) восстановители (аскорбиновая кислота; ионы металлов и элементы питания) ферменты и кофакторф (каталаза, пероксидаза, полифенолоксидаза, NAD) ингибиторы метаболизма (фенолы, хиноны); активаторы (ИУК, ГК) и ингибиторы роста (АБК и др.) C. 21

Устойчивость к действию радиации на уровне целого растения обеспечивается: а) неоднородностью популяции делящихся клеток меристем б) асинхронностью делений в меристемах, из-за которой в каждый данный момент в них содержатся клетки на разных фазах митотического цикла с неодинаковой радиоустойчивостью в) существованием в апикальных меристемах фонда клеток типа покоящегося центра, они приступают к энергичному делению при остановке деления клеток основной меристемы и восстанавливают и инициальные клетки, и меристему г) наличием покоящихся меристем типа спящих почек, они при гибели апикальных меристем начинают активно функционировать и восстанавливают повреждение C. 22

Меры профилактики радиоактивного загрязнения окружающей среды Ø охрана атмосферного слоя Земли как природного экрана, предохраняющего от губительного космического воздействия радиоактивных частиц Ø соблюдение техники безопасности при добыче, использовании и хранении радиоактивных элементов, применяемых человеком в процессе его жизнедеятельности C. 23

Пути уменьшения поступления радионуклидов в продовольственное сырье 1. проведение организационнохозяйственных и технологических мероприятий 2. изменение структуры посевных площадей 3. мелиорация загрязненных земель, направлен-ной на локализацию процессов миграции радиоактивных веществ 1. внесение повышенных доз удобрений и извести C. 24