Определение длины волны света

Лабораторная работа № 4


ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ

Принадлежности: прибор для определения длины световой волны, источник света, дифракционная решетка.

Дифракционной решеткой называют систему большого числа близких параллельных щелей. Простейшая дифракционная решетка представляет собой стеклянную пластинку, на которой с помощью делительной машины нанесен ряд параллельных штрихов.

Места, прочерченные делительной машиной, рассеивают свет так, что в направлении наблюдения попадает лишь ничтожная часть, поэтому штрихи являются практически почти непрозрачными промежутками между неповрежденными частями пластинки - щелями.

В простейшем случае нормального падения света на прозрачную дифракционную решетку с шириной прозрачных штрихов "d" и непрозрачных "b" положение максимумов определяется равенством:

mλ=(a+b)sinφ =d sinφ

где φ - угол дифракции

λ - длина световой волны

m - порядок спектра

d=(a+b) - так называемая "постоянная решетка"

При m=0 условие максимума удовлетворяется для всех длин волн, т.е. при

φ=0 наблюдается центральная светлая (белая) полоса, справа и слева симметрично располагаются цветные максимумы (цветные полосы). Предельное число спектров, которое можно получить при помощи решетки дается соотношением:

Одной из основных характеристик дифракционной решетки является ее разрешающая способность. Разрешающая способность решетки определяется из условия Рэлея, по которому: две спектральные линии разрешаются (видны

раздельно), если максимум одной линии (λ 1) попадает на место ближайшего минимума второй линии (λ 2) .


Из этого следует, что разрешающая способность решетки /А/ будет:

где N - число штрихов решетки.

В решетке большая разрешающая сила достигается за счет больших значений N ,

т.к. порядок т невелик.


Прибор для определения длины световой волны. Назначение и устройство.

Прибор /рис.1/ состоит из деревянной рейки /1/ прямоугольного сечения
длиной несколько больше 500 мм. На верхней поверхности рейки нанесена шкала
с миллиметровыми делениями. На боковых гранях рейки сделаны пазы, идущие по всей длине. По середине рейки, внизу, прикреплена



металлическая скоба /2/, с которой при помощи шарнира скреплен конец металлического стержня /3 /. На этом стержне рейка может быть закреплена под разными углами винтом /4/. К торцу передней части рейки прикреплена рамка /5/. В рамку вкладывается дифракционная решетка с 500 и с 1000 штрихами на 1 см. С другого конца на рейку надевается ползунок /6/, лапки которого скользят в пазах рейки. Ползунок может перемещаться по всей, длине рейки. На ползунке укреплен щиток /7/, верхняя часть которого окрашена в черный цвет.

Нижняя часть щитка белая с черной шкалой. Ноль шкалы расположен посередине щитка. Сантиметровые деления отмечены порядковыми цифрами. Под нулевым делением в щитке сделано небольшое прямоугольное окно /8/, а под ним вдоль нулевого деления шкалы сделана прорезь. К прибору прилагается одна дифракционная решетка с 500 делениями на 1 см.

РАБОТА С ПРИБОРОМ


Для выполнения лабораторной работы по определению длины световой волны необходимо иметь штатив или подставку от подъемного столика /9/ /рис.4/ и электрическую лампочку в патроне на штативе.

Патрон с электрической лампочкой устанавливается на демонстрационном столе так, чтобы работающим была видна только одна накаленная нить лампы в виде вертикальной прямой. Для этой цели удобна "софитка" - лампа /рис.2/, которая имеет одну нить накала.

Для работы можно воспользоваться обычной электрической лампой, расположив ее так, как показано на рис.3.

Установку для работы собирают так, как показано на рис.4.

Прибор укрепляется на подставке от подъемного столика на такой высоте, чтобы горизонтально установленная рейка была на


уровне глаз наблюдателя. На задний конец рейки надевают ползунок со шкалой, обращенной к рамке. В рамку вставляют дифракционную решетку /при этом штрихи, нанесенные на дифракционную решетку, должны быть параллельны щели на щитке/. Приблизив глаз к дифракционной решетке, направляют прибор на источник света так, чтобы фиолетовая часть каждого спектра была обращена к середине шкалы /к щели/.

При решетке с 500 штрихами на 1 см обычно видны три пары спектров. В этом случае лучше пользоваться первой или второй парой спектров /считая от окна/. Дальнейшие спектры бывают обычно расплывчаты и их границы определить трудно. Если спектры располагаются не параллельно шкале, то это означает, что штрихи на решетке не параллельны нити накала лампы. Слегка поворачивают лампу с решеткой, добиваются, чтобы спектры располагались параллельно шкале. В лабораторной работе определяют длины световой волны фиолетовых и красных лучей на грани их видимости. Для этого отсчитывают по шкале в первых спектрах, расположенных по обе стороны от окна, расстояние от середины шкалы до крайних фиолетовых лучей и крайних красных /"С"/.

Если полученные значения у левого спектра отличны от соответствующих значений у правого, то находят среднее значение как для фиолетовых, так и для красных лучей /сумму значений делят на два/, затем по шкале на рейке определяют в миллиметрах расстояние от щитка до дифракционной решетки, которая расположена на нулевом делении шкалы. Деля расстояние "С" от середины шкалы щитка до наблюдаемого луча на расстояние l от щитка до дифракционной

решетки, получают тангенс угла φ , под каким виден данный луч. Синус этого угла равен отношению длины световой волны наблюдаемого луча к расстоянию между

соседними штрихами решетки /т.е. постоянной решетки d /. Так как φ мал, то без существенной погрешности можно допустить, что tgφ≈sinφ , тогда будем иметь:

или откуда:

В нашем случае "d " будет равно 1/500 см решетки с 500 штрихами на 1 см или 1/50мм с 50 штрихами на 1 мм. Если определяют длину световой волны по

спектрам второго порядка, то вместо λ надо брать (поставить) . Тогда:

Для получения более точных результатов необходимо l брать возможно большим и передвигать ползунок со щитка по рейке до тех пор, пока начало /или конец/ спектра не окажется на штрихе щитка и С выразится в целых миллиметрах. Результаты, которые получают с прибором, можно видеть из следующего примера:

Крайние фиолетовые лучи видны на расстоянии 11 мм от нулевого деления шкалы (как справа, так и слева). Шкала отстоит от дифракционной решетки на расстоянии 495 мм. Крайние красные лучи видны на расстоянии 19 мм при шкале, отстоящей на 490 мм.

Тогда длина волны фиолетовых лучей равна:

мк


а, длина красных лучей равна:

мк


Лабораторную работу можно поставить иначе: по заранее известным длинам световых волн определяют постоянную данной дифракционной решетки. Постоянная решетки: мм

, 1мм=10 -3 мк, где m=1,2,3,…

ОПРЕДЕЛЕНИЕ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ ДИФРАКЦИОННОЙ РЕШЕТКИ

Зная постоянную решетки и измерив линейкой длину решетки, можно найти число штрихов в ней N (такая оценка числа N предполагает, что освещены и работают все штрихи решетки).

Порядок дифракционного спектра m , входящего в выражение разрешающей способности:

Надо взять из опыта, какой наивысший из дифракционных спектров имеет еще достаточную для наблюдения интенсивность (в редких случаях бывает больше, чем 3 или 4)

ЛИТЕРАТУРА: 1. Ландсберг, Оптика.

2. Курс физики под редакцией академика Папалекси, т. 2.

3. Фриш, Техника спектроскопа.

ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ

ГОНИОМЕТРА

ГОНИОМЕТР. Горизонтальный лимб 1 (круг) гониометра разделен на градусы или их части. В центре лимба находится предметный столик А, на который ставится дифракционная решетка. Столик может вращаться около вертикальной оси. Угловое положение столика с решеткой отсчитывается по угловому нониусу N2, скользящему по лимбу. На штативе гониометра неподвижно укреплена коллиматорная труба К с вертикальной щелью S. Коллиматор посылает на решетку узкий параллельный пучок лучей. Против коллиматора находится труба М, которая может вращаться вокруг вертикальной оси, проходящей через центр лимба. Угловое положение трубы фиксируется при


помощи нониуса N1. В окуляре оптической трубы М помещен крест нитей, устанавливаемый в процессе работы на линии дифракционного спектра при

измерении углов φ , образованных направлениями главных максимумов с неотклоняемыми решеткой лучами.

ОБЩИЕ СВЕДЕНИЯ: Дифракцией волн называется огибание волнами небольших препятствий или краев отверстий, соизмеримых с длинной волны. Совокупность узких параллельных щелей с одинаковой шириной, соизмеримой с длинной волны, расположенных на равных расстояниях друг от друга, называется дифракционной решеткой.

Если на дифракционную решетку направить пучок параллельных лучей с одинаковой длинной волны, то часть пучка пройдет через решетку по первоначальному направлению, а часть отклонится от первоначального

направления на угол φ . Этот угол носит название угла дифракции. Его величина зависит от расстояния между серединами двух соседних щелей (а+b) и длины

волны А, падающего света.

Если собрать прошедшие сквозь дифракционную решетку лучи в фокусе линзы, то наибольшая интенсивность света окажется в точке, соответствующей

углу φ =0. Следующие максимумы интенсивности получаются в точках,

соответствующим углам φ к, удовлетворяющим уравнению:

(a+b)sin φ к = kλ (1), где (а+b) - постоянная решетки,

k - порядок дифракционного спектра (k =0,1,2,...).

Формула (1) показывает, что, зная (а+b), φ к и k, можно найти длину световой волны.

Для измерения углов дифракции в этой работе применяют гониометр. На столике гониометра перпендикулярно к оси коллиматора устанавливают дифракционную решетку. Щель коллиматора освещают лампой.

Если установить зрительную трубу по направлению оси коллиматора, то в поле зрения трубы мы увидим нулевой центральный максимум (изображение щели коллиматора).

Смещая трубу вправо или влево, увидим сначала спектр первого порядка. При дальнейшем поворачивании трубы в поле зрения ее окажутся спектр второго порядка и т.д..

Для определения угла дифракции какой-либо волны необходимо навести визирную лампу зрительной трубы на линию соответствующего цвета в желаемом порядке справа или слева от нулевого максимума.

Пусть отсчет положения трубы от нуля шкалы гониометра при наводке

слева будет α и справа β. Тогда разность отсчетов β-α дает удвоенный угол дифракции.


ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Прочесть описание гониометра.

2. Направить коллиматор на лампу. Проверить, стоит ли дифракционная решетка
перпендикулярно к выходящему из коллиматора пучку лучей.

3. Навести зрительную трубу на центральный дифракционный максимум.
Перемещением трубы окуляра добиться отчетливого изображения нити,
натянутой в окуляре и отчетливого изображения щели коллиматора.

4. Навести пересечение нитей на синюю линию в спектре первого порядка сначала
слева, затем справа. При каждой установке отсчет положения трубы
производить по нониусу так, что

где α и β - отсчет по нониусу.

5. Повторить измерения, указанные в пункте 4 для красной линии в спектре
второго порядка.

6. Определить углы дифракции по формуле:


Вопросы и задания для подготовки к лабораторной работе №4

"ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ

ДИФРАКЦИОННОЙ РЕШЕТКИ"

Тема: "ДИФРАКЦИЯ СВЕТА"

1. Основные представления о современных взглядах на природу света.

2. Четко знать, какие явления подтверждают волновую и корпускулярную
природу света. Куда отнести явление дифракции света?

3. Принцип Гюйгенса. В чем суть дополнений этого принципа, внесенных
Френелем? /Принцип Гюйгенса-Френеля/.

4. В чем заключается явление дифракции света? Уметь дать четкое
определение.

5. Метод зон Френеля. Распространяется ли свет прямолинейно или нет?
Дифракционные явления Френеля /познакомиться с применением к
конкретным случаям метода зон Френеля/.

6. Дифракционные явления Фраунгофера /чем отличаются от дифракционных
явлений Френеля/. Дифракция Фраунгофера на одно щели, условие min и
max, график распространения /распределения интенсивности света/.

7. Дифракционная решетка - что это такое, как освещается, как идет свет
после решетки, разность хода между лучами, как влияют min и max.
Дополнительные min и max - с чем они связаны, как влияют на
дифракционную картину.

8. Почему белый свет разлагается дифракционной решеткой на цветной
спектр.

9. Уметь чертить оптическую схему дифракционного спектроскопа, знать
назначение щели коллиматора.

10. Характеристики решетки: дисперсия и разрешающая способность. От чего
конкретно они зависят? Критерий Рэлея?

11. Как выглядят дифракционные спектры: чередование цветов, порядков? Как
влияет на вид спектра замена одной решетки другой / с отличной
постоянной d /?

12. Ограниченно ли число порядков дифракции или нет? При любом ли

соотношении между постоянной d и длинной волны А, наблюдается дифракция света?

13. Кратко познакомиться с дифракцией в объемных дифракционных решетках
/решетках кристаллов/, формулой Вульфа-Брегга.

14. Четко представлять содержание опытов работы, основные результаты.

15. В чем заключается отрицательна роль дифракционных явлений в
оптических приборах?

Национальный исследовательский университет «МЭИ»

(Московский энергетический институт)

Кафедра Физики им. В. А. Фабриканта

Лабораторная работа 3

по курсу «Общая физика»

Определение длины световой волны с помощью дифракционной решётки

Выполнил :

Студент 2-го курса

гр. ФМ-1-14

Навоев М. М.

Принял :

старший преподаватель

Бамбуркина И. А.

Москва 2015

Цель работы: наблюдение дифракционного спектра решетки, измерение длин световых волн, излучаемых спектральной лампой, и изучение спектроскопических характеристик дифракционной решетки.

1. Введение

Плоская прозрачная дифракционная решетка представляет собой систему равностоящих прозрачных узких щелей, разделенных непрозрачными полосками. Сумма ширины b щели и непрозрачной полосы a называется периодом решетки d (рис. 1).

Рис. 1 Рис. 2

Пусть на решетку перпендикулярно её поверхности падает плоская монохроматическая волна. После прохождения волной решетки изменяется направление распространения волны, происходит дифракция.

Дифракцию в параллельных лучах принято называть дифракцией Фраунгофера. Для выполнения условий формирования и наблюдения дифракционного спектра решетки используется следующая схема (рис. 2). Монохроматический свет от источника 1 освещает щель 2 , находящуюся в фокальной плоскости собирающей линзы 3 . После линзы 3 параллельный пучок света, падает на дифракционную решетку 4 . Световая волна дифрагирует при прохождении через решетку, образуя вторичные когерентные волны. Они собираются линзой 5 на экране в ее фокальной плоскости 6 .

Распределение интенсивности света в дифракционной картине получим, если учтем распределение интенсивности при дифракции на каждой щели и перераспределение энергии в пространстве из-за интерференции волн от всех щелей. При небольших углах дифракции расчет проще вести графическим методом сложения амплитуд.

Пусть на щель, длина которой l много больше ее ширины b (l >> b ) падает параллельный пучок света. Согласно принципу Гюйгенса-Френеля каждая точка волновой поверхности становится источником вторичных сферических волн, распространяющихся во все стороны под углами дифракции q. Эти волны когерентны и при наложении могут интерферировать. Разобьем открытую часть волнового фронта в плоскости щели на узкие полоски равной ширины, длиной l , параллельные краям щели (см. рис. 3). Каждая такая полоска будет играть роль вторичного источника волн. Так как площади полосок равны, то амплитуды колебаний ΔА i , идущих от этих источников будут равны между собой, равны также и начальные фазы этих волн, так как плоскость щели совпадает с волновой поверхностью падающей волны. В точку наблюдения колебания от каждой полоски придут с одинаковым по величине отставанием по фазе, которое, в свою очередь, зависит от угла дифракции q. Это отставание можно найти из соотношения (рис. 3).

Рис. 3 а б Рис. 4

Разность фаз лучей идущих от краев щели , где – геометрическая разность хода крайних лучей (рис. 3).

Чтобы найти результирующую амплитуду колебаний волн, приходящих в точку наблюдения P, поступим следующим образом. Амплитуду колебаний, посылаемых каждой полоской представим в виде вектора , отставание этих колебаний по фазе на величину g i , изобразим поворотом вектора против часовой стрелки. Тогда сумма векторов будет выглядеть в виде цепочки векторов, одинаковых по модулю и повернутых относительно друг друга на один и тот же угол g i (рис. 4). Результирующая амплитуда () – вектор , являющйся хордой дуги окружности радиуса R . Очевидно, что . Обозначим через A 0 длину дуги, состоящей из звеньев цепочки (). Так как , то . Из этих двух соотношений получим, что . Поскольку интенсивность света I ~ A 2 , то для распределения освещенности экрана получим формулу:

где . Нулевая освещенность (дифракционный минимум) будет наблюдаться в точках, где , т.е. при (При g = 0 все вектора выстраиваются вдоль прямой линии, и I = I 0 – нулевой максимум).

Отсюда получим условие для минимумов при дифракции света на одной щели:

, m = 1, 2, 3… (2)

График зависимости I от sin q показана на рис. 5.

В дифракционной решетке имеется N таких щелей (до тысячи и более). При падении света на решетку каждая из щелей даст в плоскости экрана картину, представленную на рис. 5.

При наложении эти картины пространственно совпадут, так как их пространственное положение определяется не тем, откуда вышли лучи, а тем, под каким углом q идут эти лучи (на рис. 2 видно, что лучи, вышедшие из разных щелей, но под одним и тем же углом q, попадут в одну точку на экране). Если бы волны, идущие от щелей, были не когерентны, то такое наложение привело бы к простому увеличению интенсивности света не экране в N раз по сравнению с освещенностью от одной щели. Но эти волны когерентны и это приводит к новому перераспределению энергии на экране, но уже в пределах каждого из максимумов от одной щели.

Для нахождения этого нового перераспределения энергии, рассмотрим лучи идущие от двух соответствующих точек соседних щелей, т.е. от точек лежащих на расстоянии d друг от друга (рис. 1). Разность хода D волн, идущих из этих точек под углом дифракции q, равна (рис 1).

Если выполняется условие интерференционного максимума – , то на экране в соответствующем месте будет расположена светлая полоса.

Таким образом, положение так называемых главных максимумов определяется формулой:

, n = 0, 1, 2, 3… (3)

Минимумы интенсивности при взаимной интерференции возникают в тех случаях, если разность фаз волн, идущих от соседних щелей, равна и т.д. Для этих углов дифракции цепочка векторов замыкается в окружность один раз (рис. 4а), два раза и т.д. и суммарный вектор . То есть этим углам дифракции соответствуют так называемые дополнительные минимумы , положение которых можно найти по формуле

, k = 1, 2, 3…, но k N , 2N , 3N … (4)

Таким образом, между главными максимумами располагается N – 1 дополнительный минимум. Между дополнительными минимумами располагаются слабые вторичные максимумы. Число этих максимумов, приходящихся на промежуток между соседними главными максимумами, равно N – 2.

Углам дифракции, в направлении которых ни одна из щелей не посылает свет, соответствуют главные минимумы , которые определяются формулой (2).

Результирующая картина распределения интенсивности света на экране с учетом формул (1), (2), (3) и (4) представлена на рис. 6. Здесь пунктирная линия повторяет распределение интенсивности при дифракции на одной щели.

При освещении решетки немонохроматическим светом дифракция сопровождается разложением света в спектр. Центральный максимум будет иметь тот же цвет, что и источник, так как при q = 0 световые волны любой длины имеют нулевую разность хода. Слева и справа от него будут располагаться максимумы для различных длин волн 1-го, 2-го и т.д. порядков, причем большей длине волны будет соответствовать больший угол дифракции q. Таким образом, дифракционная решетка может служить спектральным прибором (рис. 7). Основное назначение таких приборов – измерение длины волны исследуемого света.

2. Описание установки и метода измерений

Задача измерения длины волны с помощью решетки с известной постоянной d сводится к измерению углов q, под которыми наблюдаются дифракционные максимумы.

Оптическая схема установки приведена на рис. 8.

Источник света 1 освещает щель 2 , находящуюся в фокальной плоскости линзы 3 коллиматора. После коллиматора параллельный пучок света, падает по нормали на дифракционную решетку 4 , установленную на столике прибора. Дифрагированная световая волна попадает в объектив 5 зрительной трубы 6 и наблюдается в окуляр 7 .

Измерения углов дифракции производятся с помощью оптического прибора – гониометра (рис. 9).

Его основные части: зрительная труба 1 , ее окуляр 2 , винт фокусировки трубы 3 , отсчетный микроскоп 4 , столик 5 , коллиматор 6 , микрометрический винт коллиматора 7 , регулирующий размер щели коллиматора. Зрительная труба укреплена на вращающемся основании 8 .

Измерение углов, под которыми наблюдается дифракционный максимумы, производится с помощью отсчетного устройства. Величина угла q определяется по лимбу, который рассматривается через окуляр микроскопа 4 при включенном освещении. На поверхности стеклянного лимба нанесена шкала с делениями от 0° до 360°. Оцифровка делений произведена через 1°. Каждый градус разделен на три части. Следовательно, цена деления лимба равна 20". (При принятом способе измерения не используется обратное изображение и шкала в правом окне поля зрения отсчетного микроскопа.) Поле зрения отсчетного микроскопа изображено на рис. 10.

Отсчет производится следующим образом. В левом окне наблюдаются изображения диаметрально противоположных участков лимба и вертикальный индекс для отсчета градусов. Число градусов равно видимой ближайшей левой от вертикального индекса цифре на верхней шкале. Число минут определяется с точностью до 5" по положению вертикального индекса. Отсчет на рисунке примерно равен 0°15´.

3. Порядок выполнения работы

1. Включим источник света (спектральную лампу) перед щелью коллиматора. Лампа разгорается в течение 5-7 минут.

2. Ознакомимся с установкой и заполним таблицу спецификации измерительных приборов.

3. Поворачивая зрительную трубу, совместим перекрестие окуляра с изображением щели коллиматора. Изображение щели должно быть отчетливо видно и иметь ширину около 1 мм.

4. Вращением оправы окуляра трубы добьемся четкого изображения визирного креста в поле зрения окуляра.

5. Установим дифракционную решётку с известной постоянной на столике гониометра так, чтобы её плоскость была перпендикулярна оси коллиматора.

6. Включим освещение гониометра.

7. Поворачивая зрительную трубу влево и вправо, наблюдаем линии спектра лампы, располагающиеся симметрично от нулевого (неокрашенного) максимума. Зрительную трубу следует поворачивать медленно и плавно. Определим число видимых порядков спектра с каждой стороны от нулевого максимума. Одновременно проследим, чтобы отсчёт по шкале лимба при наблюдении линий спектра не выходил за пределы интервала углов от 20° до 270°. В противном случае освободим винт столика 5 и поворотом насадки с этим винтом вокруг вертикальной оси прибора введём требуемый участок лимба. После чего винт снова закрепим. Это даёт возможность не переходить через нуль шкалы лимба при измерениях и тем самым упрощает расчёты.

8. Произведем измерение углов, при которых наблюдаются различные линии в спектрах ±1, ±2, ±3 и т.д. порядков. Для этого к каждой линии слева и справа от центральной последовательно подведём перекрестие окуляра зрительной трубы. Отсчет производим по лимбу с помощью отсчётного микроскопа, как описано выше.

9. Данные измерений занесём в табл. 1. При измерениях через α обозначено угловое положение линий спектра справа от нулевого максимума, а через β – слева от нулевого максимума.

Таблица 1

Постоянная решетки d = 6,03*10 -5

4. Обработка результатов измерений

1. Рассчитайте угол дифракции q по формуле

2. Для каждого значения угла q найдём длину волны по формуле

(фиолетовый),

(зелёный).

3. Вычислим среднее значение длины волны для линии данного цвета. Результаты вычислений запишем в табл. 1.

4. Из формулы (6) выведем формулу для расчета погрешности Δλ и рассчитайте погрешность. Δα = Δβ = 5´.

5. Запишем окончательный результат


5. Дополнительное задание

Основными характеристиками спектрального прибора являются угловая дисперсия и разрешающая способность.

Определение угловой дисперсии

Угловая дисперсия – характеристика способности прибора пространственно разделять волны различной длины. Если две линии отличаются по длине волны на δλ и им соответствует разность углов δq, то мерой угловой дисперсии служит величина .

Пусть имеются две близкие спектральные линии с длинами волн λ 1 и λ 2 . Расстояние между максимумами δq для длин волн λ 1 и λ 2 находится из условия главных максимумов интенсивности. После дифференцирования в формуле (3) имеем: d ·cos (q)·δq = n δλ. Откуда

Проведём измерения угловых расстояний для желтого дублета во всех видимых порядках спектра.

Зная разность δλ = λ 1 – λ 2 , вычислим угловую дисперсию дифракционной решетки в спектре 1-го и 2-го порядков (или других порядков). Размерность D – мин/нм.

Полученный результат сравним с теоретическим (формула 7).


В ходе лабораторной работы были произведены замеры двух световых волн. Было установлено, что они соответствуют табличным значениям.

Лабораторная работа.

Тема: Определение длины световой волны.

Цель работы: опытным путем определить длину световой волны.

Оборудование: прибор для определения длины световой волны, дифракционная решетка и источник света.

Теоретическая часть работы: Дифракционная решетка представляет собой совокупность большого числа узких щелей, разделенных непрозрачными промежутками.

d = a + b – период дифракционной решетки

d ∙ sin = k ∙ λ, k = 0, 1, 2… - формула дифракционной решетки,

φ – угол, под которым наблюдается max света соответствующего цвета.

В работе используется дифракционная решетка с периодом 1/100 мм, 1/50 мм (период указана на решетке). Она является основной частью измерительной установки показанной на рис.1. Решетка 1 устанавливается в держателе 2, который прикреплен к концу линейки 3. На линейке же устанавливается черный экран 4 с узкой вертикальной щелью 5, посередине, экран может перемещаться вдоль линейки, что позволяет изменять расстояние между ним и дифракционной решеткой (для получения наибольшей резкости). На экране и линейки имеются мм шкалы. Если смотреть сквозь решетку и прорезь на источник света, то на черном фоне экрана можно наблюдать по обе стороны от щели дифракционные спектры 1-го, 2- го и т. д. порядков (случайный перекос в расположении спектров устраняется поворотом рамки с решеткой).

Длину волны определяем по формуле: λ = (d ∙ sin)/ k.

Используя рис.2 и формулу дифракционной решетки, докажите, что длину световой волны можно определить по формуле: λ = (d ∙ b) / (k ∙ а), k – порядок спектра.

При выводе этой формулы учтите, что вследствие малости углов (не менее > 5) под которым наблюдаются максимумы, их sin можно заменить на tg.

Расстояние а отсчитывают по линейке от решетки до экрана, b – по шкале экрана от щели до выбранной линии спектра. В этой работе погрешность измерений λ не оценивается из-за неопределенности выбора середины части спектра данного цвета.

Скачать:


Предварительный просмотр:

Лабораторная работа.

Тема: Определение длины световой волны.

Цель работы: опытным путем определить длину световой волны.

Оборудование: прибор для определения длины световой волны, дифракционная решетка и источник света.

Теоретическая часть работы: Дифракционная решетка представляет собой совокупность большого числа узких щелей, разделенных непрозрачными промежутками.

D = a + b – период дифракционной решетки

D ∙ sin = k ∙ λ, k = 0, 1, 2… - формула дифракционной решетки,

φ – угол, под которым наблюдается max света соответствующего цвета.

В работе используется дифракционная решетка с периодом 1/100 мм, 1/50 мм (период указана на решетке). Она является основной частью измерительной установки показанной на рис.1. Решетка 1 устанавливается в держателе 2, который прикреплен к концу линейки 3. На линейке же устанавливается черный экран 4 с узкой вертикальной щелью 5, посередине, экран может перемещаться вдоль линейки, что позволяет изменять расстояние между ним и дифракционной решеткой (для получения наибольшей резкости). На экране и линейки имеются мм шкалы. Если смотреть сквозь решетку и прорезь на источник света, то на черном фоне экрана можно наблюдать по обе стороны от щели дифракционные спектры 1-го, 2- го и т. д. порядков (случайный перекос в расположении спектров устраняется поворотом рамки с решеткой).

Длину волны определяем по формуле: λ = (d ∙ sin )/ k.

Используя рис.2 и формулу дифракционной решетки, докажите, что длину световой волны можно определить по формуле: λ = (d ∙ b) / (k ∙ а), k – порядок спектра.

При выводе этой формулы учтите, что вследствие малости углов (не менее > 5) под которым наблюдаются максимумы, их sin можно заменить на tg.

Расстояние а отсчитывают по линейке от решетки до экрана, b – по шкале экрана от щели до выбранной линии спектра. В этой работе погрешность измерений λ не оценивается из-за неопределенности выбора середины части спектра данного цвета.

Практическая часть работы.

Задание №1.

  1. Собрать измерительную установку, установить экран на расстоянии, на котором четко просматриваются спектры.
  2. Глядя сквозь дифракционную решетку и щель в экране на источник света, и перемещая экран, установите его так, чтобы дифракционные спектры располагались параллельно шкале экрана.
  3. Не двигая прибора, по шкале определите положение середин цветных полос в спектрах I по-

рядка. Результаты запишите в таблицу. Определить среднее значение результатов измерения.

Расчеты:

  1. Сравните полученные результаты, полученные результаты с длинами волн этих цветов на цветной вклейке или по предложенной таблице:
  1. Сделайте вывод.

Задание №2. Наблюдение дифракции света в граммофонной пластинке(78 об/мин., 33 об/мин.)

  1. Взять отрезок пластинки в правую руку и приставить справа к глазу так, чтобы бороздки расположились вертикально, то есть параллельно нити лампы, а свет от лампы падал на поверхность под различными углами. Наблюдение лучше вести в затемненной комнате.
  2. Сделайте вывод зависимости отчетливости и яркости полученных спектров от количества бороздок и угла падения лучей.

Контрольные вопросы:

1) Почему в центральной части спектра полученного на экране при освещении дифракционной решетки белым светом, всегда наблюдается белая полоса?

2) Дифракционные решетки имеют 50 и 100 штрихов на 1 мм. Какая из них даст на экране более широкий спектр при прочих равных условиях?

3) Как изменяется картина дифракционного спектра при удалении экрана от решетки?

4) Какие трудности встречаются при постановке дифракционных опытов и как можно их преодолеть?

5) Чем отличается дифракционный спектр от дисперсионного (призматического) спектра?

6) Почему с помощью микроскопа нельзя увидеть атом?

7) Каковы причины погрешностей измерений?

8) Почему красная часть спектра любого порядка расположена ближе к центру от центра шкалы?

9) Сколько порядков спектра можно наблюдать с помощью данного прибора?

10) Какие физические величины или характеристики можно определить с помощью данного прибора?

Рис. 1. Прибор для определения длины волны света.

1 – дифракционная решетка; 4 –экран;

2 – держатель; 3 – линейка; 5 – вертикальная щель

Рис. 2. Схема опыта по определению длины волны.

Определение длины световой волны по готовым фотографиям.

Установка для получения фотографий состоит из лазера ЛГИ – 207Б, щели и экрана (расположенного на расстоянии L = 1,2 м от щели); на последний помещается лист фотобумаги. Время экспозиции центрального дифракционного пятна составляет 10 – 15 с, остальной части картины – 3 мин.

Были получены 4 фотографии дифракционных картин, соответствующие различной ширине щели:

b 1 = 0,33 мм (рис. 1), b 2 = 0,20 мм (рис. 2), b 3 = 0,15 мм (рис. 3), b 4 = 0,10 мм (рис.4).

Наблюдаемая на экране дифракционная картина является фраунгоферовой, поэтому для определения длины волны можно использовать условие дифракционного минимума: b sin φ = k λ. Ввиду малости угла выполняется условие sin φ ≈ tg φ = а /I, где а – расстояние от середины максимума нулевого порядка до минимума к – го порядка. Тогда формула для расчета длины волны имеет вид:

Относительная погрешность ε λ длины волны в этом случае определяется выражением:

ε λ = .

Так как погрешность уменьшается с увеличением ширины b и расстояния а , то для вычисления λ используется рис. 1. При k = 15 и а = 35 мм длина волны λ = 610 нм.

Затем, используя полученное значение λ и значения ширины щели b 2 , b 3 и b 4 , необходимо вычислить положения а 2 , а 3 , а 4 минимумов 5-го порядка. Сравнивая полученные значения а i с измерениями на рис. 2 - 4, необходимо сделать выводы о справедливости условия дифракционного минимума для щели и изменения вида дифракционной картины в зависимости от ширины щели.

Порядок выполнения работы.

1. По фотографии (рис. 1) определить положение 15-го дифракционного минимума относительно середины центрального максимума.

4. По фотографиям (рис. 2 - 4)найти положение этих же минимумов и сравнить полученные значения с вычислениями.

5. Сделать выводы.


Цель работы: Определение длин волн красного, зеленого и фиолетового лучей для четко видимых спектров 1-го и 2-го порядков.

Приборы и принадлежности: Дифракционная решетка, экран, лампа для подсвечивания.

Теоретическое введение

Если пучок параллельных лучей света встречает на своем пути непрозрачное круглое тело или его пропускают через достаточно малое круглое отверстие, то на экране будет замечено светлое или темное пятно в центре чередующихся темных и светлых колец.

Это явление распространения света в область геометрической тени, указывающее на отступление от закона прямолинейности распространения света получило название дифракции света .

Для получения ярких дифракционных спектров применяются дифракционные решет ки. Дифракционная решетка представляет собой плоскую стеклянную пластинку, на которой с помощью делительной машины нанесен ряд параллельных штрихов (в хороших решетках - до 1000 штрихов на миллиметр). Штрихи являются практически непрозрачными для света, т.к. из-за своей шероховатости они в основном рассеивают свет. Промежутки между штрихами свободно пропускают свет и называются щелями.

Совокупность ширины штриха и прозрачного промежутка называется периодом или постоянной решетки . Если обозначить ширину штриха через b , а ширину щели а , то период решетки

Пусть на решетку падают лучи света перпендикулярно плоскости. Свет, проходя через каждую щель, испытывает дифракцию, т.е. отклоняется от прямолинейного направления. Если на пути лучей, распространяющихся от щелей решетки, поместить линзу, а в фокальной плоскости линзы экран, то на экране в одну точку соберутся все параллельные лучи, идущие под одним и тем же углом к нормали (рисунок 1). Лучи идущие под другим углом, соберутся в другой точке. Освещенность каждой точки экрана будет зависеть как от интенсивности света, даваемой каждой щелью в отдельности, так и от результата интерференции лучей, прошедших через разные щели Как видно из рисунка 1 разность хода лучей для двух соседних щелей

где d -период решетки, φ - угол отклонения лучей.

Рисунок 1

Если эта разность будет равна четному числу полуволн, в направлении угла φ будет наблюдаться максимум освещенности:

d sinφ = 2kλ/2 = kλ, (1)

а при условии

d sinφ = (2k+1)λ/2 (2)

наблюдается минимум.

Легко видеть, что при разности хода ∆=kλ все остальные щели будут по направлению угла φ также давать максимум, т.к. во всех случаях разности хода будут кратны. Эти максимумы называются основными.

Итак, при нормальном падении лучей на решетку для основных максимумов, полученных на экране от дифракционной решетки, имеем соотношение:

d sinφ = kλ, (3)

где k - 1,2,3 ,…целое число, называемое порядком спектра . Понятие порядок спектра связано с тем, что на экране наблюдается ряд максимумов, симметрично расположенных относительно белой полосы (спектр нулевого порядка), образованной светом, прошедшим через решетку без отклонения.

Из формулы (3) видно, что чем больше длина волны, тем большему углу дифракции соответствует положение максимума (рисунок 2). При падении на решетку монохроматического света на экране возникают одноцветные полосы. Формула (3) позволяет определить длину световой волны:

λ =d sinφ/k. (4)

Определение длины волны сводится к измерению угла φ. Для измерения углов служит специальный прибор гониометр (рисунок 3). Где К - каллиматор со щелью (для получения узкого пучка параллельных лучей); Т - зрительная труба; ОК – окуляр с нитью для наведения трубы на определенную линию спектра; С - круговая шкала с нониусом;

Рисунок 2

Др - дифракционная решетка.

Определение длины световой волны при помощи дифракционной решётки

Цель работы : определение с помощью дифракционной решётки длины световых волн в различных частях видимого спектра.

Приборы и принадлежности : дифракционная решётка; плоская шкала со щелью и лампа накаливания с матовым экраном, укреплённые на оптической скамье; миллиметровая линейка.

1. ТЕОРИЯ МЕТОДА

Дифракцией волн называется огибание волнами препятствий. Под препятствиями понимаются различные неоднородности, которые волны, в частности, световые, могут огибать, отклоняясь от прямолинейного распространения и заходя в область геометрической тени. Дифракция наблюдается также, когда волны проходят через отверстия, огибая их края. Дифракция заметно выражена, если размеры препятствий или отверстий порядка длины волны, а также на больших расстояниях от них по сравнению с их размерами.

Дифракция света находит практическое применение в дифракционных решётках. Дифракционной решёткой называют всякую периодическую структуру, влияющую на распространение волн той или иной природы. Простейшая оптическая дифракционная решётка представляет собой ряд одинаковых параллельных очень узких щелей, разделённых одинаковыми непрозрачными полосами. Кроме таких прозрачных решёток существуют также отражательные дифракционные решётки, в которых свет отражается от параллельных неровностей. Прозрачные дифракционные решётки обычно представляют собой стеклянную пластинку, на которой алмазом с помощью специальной делительной машины прочерчены полосы (штрихи). Эти штрихи являются почти полностью непрозрачными промежутками между неповреждёнными частями стеклянной пластинки – щелями. Число штрихов, приходящихся на единицу длины, указывается на решётке. Периодом (постоянной) решётки d называется суммарная ширина одного непрозрачного штриха плюс ширина одной прозрачной щели, как показано на рис. 1, где подразумевается, что штрихи и полосы расположены перпендикулярно плоскости рисунка.

Пусть на решётку (ДР) перпендикулярно её плоскости падает параллельный пучок света, рис. 1. Поскольку щели являются очень узкими, то будет сильно выражено явление дифракции, и световые волны от каждой щели пойдут по различным направлениям. В дальнейшем прямолинейно распространяющиеся волны будем отождествлять с понятием лучей. Из всей совокупности лучей, распространяющихся от каждой щели, выделим пучок параллельных лучей, идущих под некоторым углом  (угол дифракции) к нормали, проведённой к плоскости решётки. Из этих лучей рассмотрим два луча, 1 и 2, которые идут от двух соответствующих точек A и C соседних щелей, как показано на рис. 1. Проведём к этим лучам общий перпендикуляр AB . В точках A и C фазы колебаний одинаковы, но на отрезке C B между лучами возникает разность хода , равная

 = d sin. (1)

После прямой AB разность хода  между лучами 1 и 2 сохраняется неизменной. Как видно из рис. 1, такая же разность хода будет существовать между лучами, идущими под тем же углом  от соответствующих точек всех соседних щелей.

Рис. 1. Прохождение света через дифракционную решетку ДР: Л – собирающая линза, Э – экран для наблюдения дифракционной картины, M – точка сведения параллельных лучей

Если теперь все эти лучи, т. е. волны, свести в одну точку, то они будут либо усиливать, либо ослаблять друг друга вследствие явления интерференции. Максимальное усиление, когда амплитуды волн складываются, происходит в том случае, если разность хода между ними равна целому числу длин волн:  = k , где k – целое число или ноль,  – длина волны. Следовательно, в направлениях, удовлетворяющих условию

d sin = k , (2)

будут наблюдаться максимумы интенсивности света с длиной волны .

Для сведения лучей, идущих под одним и тем же углом , в одну точку (M ) используется собирающая линза Л, обладающая свойством собирать параллельный пучок лучей в одной из точек своей фокальной плоскости, куда помещается экран Э. Фокальная плоскость проходит через фокус линзы и параллельна плоскости линзы; расстояние f между этими плоскостями равно фокусному расстоянию линзы, рис 1. Важно, что линза не изменяет разность хода лучей , и формула (2) остаётся справедливой. Роль линзы в настоящей лабораторной работе играет хрусталик глаза наблюдателя.

В направлениях, для которых величина угла дифракции  не удовлетворяет соотношению (2), будет происходить частичное или полное ослабление света. В частности, световые волны, приходящие в точку встречи в противоположных фазах, будут полностью гасить друг друга, и в соответствующих точках экрана будут наблюдаться минимумы освещённости. Кроме того, каждая щель из-за дифракции посылает в разных направлениях лучи разной интенсивности. В результате картина, возникающая на экране, будет иметь довольно сложный вид: между главными максимумами, определяемыми условием (2), располагаются добавочные, или побочные максимумы, разделённые совсем тёмными участками – дифракционными минимумами. Однако практически на экране будут видны лишь главные максимумы, так как интенсивность света в побочных максимумах, не говоря уже о минимумах, очень мала.

Если падающий на решётку свет содержит волны различных длин  1 ,  2 ,  3 , ..., то по формуле (2) можно подсчитать для каждой комбинации k и  свои значения угла дифракции , для которых будут наблюдаться главные максимумы интенсивности света.

При k = 0 для любого значения  получается  = 0, т. е. в направлении, строго перпендикулярном плоскости решётки, усиливаются волны всех длин. Это так называемый спектр нулевого порядка. Вообще, число k может принимать значения k = 0, 1, 2 и т. д. Два знака, , для всех значений k  0 соответствуют двум системам дифракционных спектров, расположенных симметрично по отношению к спектру нулевого порядка, слева и справа от него. При k = 1 спектр носит название спектра первого порядка, при k = 2 получается спектр второго порядка и т. д.

Поскольку всегда |sin|  1, то из соотношения (2) следует, что при заданных d и  значение k не может быть произвольно большим. Максимально возможное k , т. е. предельное число спектров k max , для конкретной дифракционной решётки можно получить из условия, которое следует из (2) при учете того, что |sin|  1:

Поэтому k max равно максимальному целому числу, не превосходящему отношения d /. Как было указано выше, каждая щель посылает в разных направлениях лучи разной интенсивности, причем оказывается, что при больших значениях угла дифракции  интенсивность посылаемых лучей слаба. Поэтому спектры с большими значениями |k |, которые должны наблюдаться под большими углами , практически видны не будут.

Картина, возникающая на экране в случае монохроматического света, т. е. света, характеризуемого одной определённой длиной волны , показана на рис. 2а. На тёмном фоне можно видеть систему отдельных ярких линий одного цвета, из которых каждая соответствует своему значению k .

Рис. 2. Вид картины, получаемой с помощью дифракционной решетки: а) случай монохроматического света, б) случай белого света

Если же на решётку падает немонохроматический свет, содержащий набор волн различных длин (например, белый свет), то при данном k  0 волны с различными длинами  будут усиливаться под разными углами , и свет будет разложен в спектр, когда каждому значению k соответствует весь набор спектральных линий, рис. 2б. Способность дифракционной решётки разлагать свет в спектр используют на практики для получения и исследования спектров.

Основными характеристиками дифракционной решётки являются её разрешающая способность R и дисперсия D . Если в световом пучке присутствуют две волны с близкими длинами  1 и  2 , то возникнут два близко расположенных дифракционных максимума. При малой разности длин волн  =  1   2 эти максимумы сольются в один и не будут видны раздельно. Согласно условию Рэлея, две монохроматические спектральные линии видны ещё раздельно в том случае, когда максимум для линии с длиной волны  1 попадает на место ближайшего минимума для линии с длиной волны  2 и наоборот, как показано на рис. 3.

Рис. 3. Схема, поясняющая условие Рэлея: I – интенсивность света в относительных единицах

Обычно для характеристики дифракционной решётки (и других спектральных приборов) используют не минимальное значение , когда линии видны раздельно, а безразмерную величину

называемую разрешающей способностью. В случае дифракционной решётки, используя условие Рэлея, можно доказать формулу

R = kN , (5)

где N – полное число штрихов решётки, которое можно найти, зная ширину решётки L и период d :

Угловая дисперсия D определяется угловым расстоянием  между двумя спектральными линиями, отнесённым к разности их длин волн :

Она показывает быстроту изменения угла дифракции  лучей в зависимости от изменения длины волны .

Отношение /, входящее в (7), можно найти, заменив его производной d /d , которую можно вычислить, используя соотношение (2), что даёт

. (8)

Для случая малых углов , когда cos  1, из (8) получаем

Наряду с угловой дисперсией D используют также линейную дисперсию D l , которая определяется линейным расстоянием l между спектральными линиями на экране, отнесённым к разности их длин волн :

где D – угловая дисперсия, f фокусное расстояние линзы (см. рис. 1). Вторая формула (10) справедлива для малых углов  и получается, если учесть, что для таких углов l f .

Чем больше разрешающая способность R и дисперсия D , тем качественнее любой спектральный прибор, содержащий, в частности, дифракционную решётку. Формулы (5) и (9) показывают, что хорошая дифракционная решётка должна содержать большое число штрихов N и иметь малый период d . Кроме того, желательно использовать спектры больших порядков (с большими значениями k ). Однако, как отмечалось выше, такие спектры плохо видны.

Целью данной лабораторной работы является определение длины световых волн в различных областях спектра при помощи дифракционной решётки. Схема установки показана на рис. 4. Роль источника света играет прямоугольное отверстие (щель) А в шкале Шк, освещаемое лампой накаливания с матовым экраном S . Глаз наблюдателя Г, находящийся сзади дифракционной решётки ДР, наблюдает мнимое изображение щели в тех направлениях, в которых световые волны, идущие от различных щелей решётки, взаимно усиливаются, т. е. в направлениях главных максимумов.

Рис. 4. Схема лабораторной установки

Исследуются спектры не выше третьего порядка, для которых в случае используемой дифракционной решётки углы дифракции  малы, в связи с чем их синусы можно заменить тангенсами. В свою очередь, тангенс угла , как видно из рис. 4, равен отношению y /x , где y – расстояние от отверстия A до мнимого изображения спектральной линии на шкале, а x – расстояние от шкалы до решётки. Таким образом,

. (11)

Тогда вместо формулы (2) будем иметь , откуда

2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Установите, как показано на рис. 4, шкалу с отверстием А на один конец оптической скамьи вблизи от лампы накаливания S , а дифракционную решётку – на другой её конец. Включите лампу, перед которой находится матовый экран.

2. Передвигая решётку по скамье, добейтесь, чтобы красная граница правого спектра первого порядка (k = 1) совпала с каким-либо целым делением на шкале Шк; запишите его значение y в табл. 1.

3. Используя линейку, измерьте расстояние x для этого случая и также занесите его значение в табл. 1.

4. Проделайте те же операции для фиолетовой границы правого спектра первого порядка и для середины зелёного участка, расположенного в средней части спектра (в дальнейшем эта середина будет для краткости называться зелёной линией); значения x и y для этих случаев также занесите в табл. 1.

5. Аналогичные измерения проделайте для левого спектра первого порядка (k = 1), занося результаты измерений в табл. 1.

Учтите, что для левых спектров любого порядка k y.

6. Те же самые операции проделайте для красной и фиолетовой границ и для зелёной линии спектров второго порядка; данные измерений занесите в ту же таблицу.

7. Занесите в табл. 3 ширину дифракционной решётки L и значение периода решётки d , которые указаны на ней.

Таблица 1

Спектр лампы

накаливания

x , см

y , см

i , нм

 i =  i , нм

Фиолетовая

3. ОБРАБОТКА ОПЫТНЫХ ДАННЫХ

    По формуле (12) рассчитайте длины волн  i для всех проведённых измерений

(d = 0,01 см). Внесите их значения в табл. 1.

2. Найдите средние значения длин волн отдельно для красной и фиолетовой границ сплошного спектра и изучаемой зелёной линии, а также средние арифметические ошибки определения  по формулам

где n = 4 – число измерений для каждого участка спектра. Занесите величины и в табл. 1.

3. Результаты измерений представьте в виде табл. 2, куда запишите границы видимого спектра и длину волны наблюдаемой зелёной линии, выраженные в нанометрах и ангстремах, взяв в качестве  средние значения полученных длин волн из табл. 1.

Таблица 2

4. По формуле (6) определите полное число штрихов решётки N , а затем с помощью формул (5) и (9) вычислите разрешающую способность R и угловую дисперсию решётки D для спектра второго порядка (k = 2).

5. Пользуясь формулой (3) и пояснением к ней, определите максимальное число спектров k max , которые можно получить с помощью данной дифракционной решётки, используя в качестве  среднюю длину волны наблюдаемой зелёной линии.

6. Вычислите частоту  наблюдаемой зелёной линии по формуле  = c /, где с – скорость света, взяв в качестве  также величину .

Все рассчитанные в пп. 46 величины занесите в табл. 3.

Таблица 3

4. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. В чём состоит явление дифракции и когда дифракция наиболее заметно выражена?

Дифракцией волн называется огибание волнами препятствий. Дифракция света – это совокупность явлений, наблюдаемых при распространении света сквозь малые отверстия, вблизи границ непрозрачных тел и т.д. и обусловленных волновой природой света. Явление дифракции, общее для всех волновых процессов, имеет особенности для света, а именно здесь, как правило, длина волны λ много меньше размеров d преград (или отверстий). Поэтому наблюдать дифракцию можно только на достаточно больших расстояниях l от преграды (l > d 2 / λ).

2. Что такое дифракционная решётка и для чего подобные решётки используются?

Дифракционной решеткой называют всякую периодическую структуру, влияющую на распространение волн той или иной природы. Дифракционной решеткой осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

3. Что обычно представляет собой прозрачная дифракционная решётка?

Прозрачные дифракционные решетки обычно представляют собой стеклянную пластинку, на которой алмазом с помощью специальной делительной машины прочерчены полосы (штрихи). Эти штрихи являются почти полностью непрозрачными промежутками между неповрежденными частями стеклянной пластинки – щелями.

4. Каково назначение линзы, используемой вместе с дифракционной решёткой? Что служит линзой в данной работе?

Для сведения лучей, идущих под одним и тем же углом φ, в одну точку используется собирающая линза, обладающая свойством собирать параллельный пучок лучей в одной из точек своей фокальной плоскости, куда помещается экран. Роль линзы в данной работе играет хрусталик глаза наблюдателя.

5. Почему при освещении белым светом в центральной части дифракционной картины возникает белая полоса?

Белый свет является немонохроматическим светом, содержащим набор волн различных длин. В центральной части дифракционной картинки k = 0 образуется центральный максимум нулевого порядка, следовательно, возникает белая полоса.

6. Дайте определение разрешающей способности и угловой дисперсии дифракционной решётки.

Основными характеристиками дифракционной решетки являются её разрешающая способность R и дисперсия D.

Обычно для характеристики дифракционной решетки используют не минимальное значение Δλ, когда линии видны раздельно, а безразмерную величину

Угловая дисперсия D определяется угловым расстоянием δφ между двумя спектральными линиями, отнесенным к разности их длин волн δλ:

Она показывает быстроту изменения угла дифракции φ лучей в зависимости от изменения длины волны λ.

ПомощьюМетодичка >> Физика

Расчетной формулой для вычисления длин световых волн при помощи дифракционных решеток. Измерение длины волны сводится к определению угла отклонения лучей...