По химическому составу среди минеральных вод выделяют. "Исследование состава минеральной воды". Минеральные воды, обогащённые органическим веществом

Минеральный состав воды – это результат взаимодействия воды как физической фазы и среды жизни с другими фазами или средами: твердой, то есть береговыми и подстилающими, почвообразующими минералами и породами; газообразной (воздушной средой) и содержащейся в ней влагой и минеральными компонентами.

Кроме того, минеральный состав обусловлен протекающими физико-химическими и физическими процессами: растворением, пептизацией, коагуляцией, седиментацией, испарением, конденсацией и т.д.

Пресной считается вода, имеющая общее солесодержание или минерализацию не более 1 г/л.


Среди пресных вод в зависимости от величины солесодержания выделяют (в мг/л):

Ультрапресные (< 100);

Маломинерализованные (100 – 200);

Среднеминерализованные (200 – 500);

Повышенной минерализации (500 – 1000).

При величине солесодержания от 1 до 25 г/л воду считают солоноватой.

Основные компоненты минерального состава вод приведены в табл. 10.

Таблица 10. Основные компоненты минерального состава вод

* ПДК приведены для воды поверхностных источников хозяйственно-бытового назначения.

Соли группы 1, так называемые главные ионы, определяются в первую очередь. Соли группы 2 необходимо учитывать при оценке качества воды, хотя они вносят незначительный вклад в солесодержание пресных вод.

Соотношение концентрации в воде «главных ионов» определяет типы химического состава воды (в мг-экв/л). В зависимости от преобладающего вида анионов (³ 25 % эквивалента при условии, что



суммы ммоль анионов и катионов принимаются равными 50 % соответственно каждая) различают воды гидрокарбонатного, сульфатного

и хлоридного типа.

Иногда выделяют также воды смешанных или промежуточных типов.

В зависимости от преобладающего вида катионов выделяют группы кальциевых, магниевых, натриевых или калиевых вод.

Анализ воды на содержание минеральных компонентов проводят в различные периоды:

для поверхностных вод – в зимнюю межень, в весеннее половодье (пик), летне-осеннюю межень, летне-осенний паводок;

для вод заболоченных участков – в зимнюю межень и весеннее половодье;

для почвенных вод – в зимнюю межень, весеннее половодье и летне-осеннюю межень.

Минеральный состав определяют, как правило, химическими методами, титриметрическими и колориметрическими. Концентрацию некоторых катионов (например, К + , Na +) можно оценить расчетными методами при наличии данных о значениях концентраций других катионов и анионов.

3.7.1. Карбонаты и гидрокарбонаты

Карбонаты и гидрокарбонаты представляют собой компоненты, определяющие природную щелочность воды. Их содержание обусловлено растворением углекислого газа атмосферы, взаимодействием воды с известняками, протекающими в воде жизненными процессами дыхания всех водных организмов.



При анализе этих анионов используют титриметрию, основанную на их реакции с ионами водорода в присутствии фенолфталеина (для СО 3 2-) или метилового оранжевого (для НСО 3 -) в качестве индикаторов.

При использовании этих двух индикаторов наблюдается две точки эквивалентности: в первой точке (рН = 8,0 – 8,2) в присутствии фенолфталеина полностью завершается титрование СО 3 2- , а во второй

(рН = 4,1 – 4,5) - НСО 3 - . Для титрования обычно используют титрованные растворы HCl с концентрацией 0,05 или 0,1 г-экв/л.

При титровании по фенолфталеину также можно определить концентрацию ионных форм ОН - , а при титровании по метиловому оранжевому ОН - , СО 3 2- и НСО 3 - .

В результате титрования СО 3 2- и НСО 3 - , которое выполняется как параллельно в разных пробах, так и последовательно в одной и той же пробе, для расчета необходимо определить общее количество кислоты (V 0), израсходованное на титрование СО 3 2- (V К) и НСО 3 - (V ГК). Причем по метиловому оранжевому (V МО) оттитровывают последовательно СО 3 2- и НСО 3 - , то есть V МО содержит долю СО 3 2- в исходной пробе, перешедших после реакции с Н + в НСО 3 - и не характеризует полностью концентрацию НСО 3 - в исходной пробе.

Следовательно, при расчете концентрации основных ионных форм, необходимо учитывать относительное потребление кислоты при титровании по фенолфталеину (V Ф) и метиловому оранжевому (V МО). При анализе возможны случаи:

1) V Ф = 0. Карбонаты, а также гидроксо-анионы в пробе отсутствуют, и потребление кислоты при титровании по метилоранжу может быть обусловлено только присутствием гидрокарбонатов;

2) V Ф ¹ 0, причем 2V Ф

3) 2V Ф = V МО. Гидрокарбонаты в исходной пробе отсутствуют, и потребление кислоты обусловлено содержанием практически только карбонатов, которые количественно переходят в гидрокарбонаты. Именно этим объясняется удвоенное, по сравнению с V Ф, потребление кислоты V МО;

4) 2V Ф > V МО. В данном случае в исходной пробе гидрокарбонаты отсутствуют, но присутствуют не только карбонаты, но и другие потребляющие кислоту анионы, а именно – гидроксо-анионы. При этом содержание последних эквивалентно составляет V ОН = 2V Ф – V МО . Содержание карбонатов можно рассчитать, составив и решив систему уравнений:

5) V Ф = V МО. В исходной пробе отсутствуют и карбонаты, и гидрокарбонаты, и потребление кислоты обусловлено присутствием сильных щелочей, содержащих гидроксо-анионы.

Присутствие свободных гидроксо-анионов в заметных количествах (случаи 4 и 5) возможно только в сточных или загрязненных водах.

Массовые концентрации анионов (не солей) рассчитываются на основании уравнений реакций потребления кислоты карбонатами (С К ) и гидрокарбонатами (С ГК ) в мг/л по формулам

где V К и V ГК – объем раствора соляной кислоты, израсходованный на титрование карбоната и гидрокарбоната соответственно, мл;

Н – точная концентрация титрованного раствора соляной кислоты (нормальность), г-экв/л;

V А – объем пробы воды, взятой для анализа, мл;

60 и 61 – эквивалентная масса карбонат- и гидрокарбонат-аниона соответственно, в соответствующих реакциях;

1000 – коэффициент пересчета единиц измерений.

Результаты титрования по фенолфталеину и метилоранжу позволяют рассчитать показатель щелочности воды, который численно равен количеству эквивалентов кислоты, израсходованной на титрование пробы объемом 1 л. Потребление кислоты при титровании по фенолфталеину характеризует свободную щелочность, а по метилоранжу – общую щелочность, которая измеряется в мг-экв/л. Показатель щелочности используется в России, как правило, при исследовании сточных вод.

3.7.2. Сульфаты

Сульфаты – распространенные компоненты природных вод. Их присутствие в воде обусловлено растворением некоторых минералов – природных сульфатов (гипс), а также переносом с дождями содержащихся в воздухе сульфатов. Последние образуются при реакциях окисления в атмосфере оксида серы (IV) до оксида серы (VI), образования серной кислоты и ее нейтрализации (полной или частичной):

2SO 2 +O 2 =2SO 3
SO 3 +H 2 O=H 2 SO 4

Наличие сульфатов в промышленных сточных водах обычно обусловлено технологическими процессами, протекающими с использованием серной кислоты (производство минеральных удобрений, производства химических веществ). Сульфаты в питьевой воде не оказывают токсического воздействия на человека, однако ухудшают вкус воды: ощущение вкуса сульфатов возникает при их концентрации 250–400 мг/л.

ПДК SO 4 2- в воде водоемов хозяйственно-питьевого назначения составляет 500 мг/л, лимитирующий показатель вредности – органолептический.

Метод определения массовой концентрации сульфат-аниона основан на реакции сульфат-анионов с катионами бария с образованием нерастворимой суспензии сульфата бария по реакции:

Ba 2+ +SO 4 2– = BaSO 4

Для определения массовой концентрации сульфат-аниона используется большое число методов. Наиболее часто применяют турбидиметрию, гравиметрию (ГОСТ 4389-72 «Вода питьевая. Методы определения содержания сульфатов»), иодометрию и др.

Иодометрический метод Комаровского основан на взаимодействии хромата бария с сульфат-ионами в кислой среде, в результате реакции выделяются бихромат-ионы в количестве эквивалентном сульфат-ионам:

2SO 4 2- + 2BaCrO 4 + H + ® 2BaSO 4 ¯ + Cr 2 O 7 2- + H 2 O

Образующиеся бихромат-ионы определяются иодометрическим методом. Для этого к раствору добавляют иодид калия, соляную кислоту, а выделившийся йод оттитровывают тиосульфатом натрия в присутствии крахмала в качестве индикатора:

Cr 2 O 7 2- + 6I - + 14H + ® 2Cr 3+ + 7H 2 O + 3I 2

2S 2 O 3 2- + I 2 ® S 4 O 6 2- + 2I -

Из реакций следует, что на 1 ион SO 4 2- приходится 3 атома выделившегося йода, следовательно, грамм-эквивалент SO 4 2- составляет 1/3 его веса – 32,02. Концентрацию сульфат-ионов С (в мг/л) рассчитывают по формуле

где V – количество раствора тиосульфата натрия, израсходованное на титрование, мл;

N – нормальность раствора тиосульфата натрия;

2,5 – пересчетный коэффициент на объем мерной колбы в случае, если мерная колба была на 250 мл, а для титрования взято 100 мл пробы;

а – объем исследуемой воды, взятый для анализа, мл;

Е – эквивалент SO 4 2- (32,02).

Этот метод применим для вод с содержанием SO 4 2- не менее 50 мг/л.

3.7.3. Хлориды

Хлориды присутствуют практически во всех пресных поверхностных и грунтовых водах, а также в питьевой воде в виде солей металлов. Если в воде присутствует хлорид натрия, она имеет соленый вкус уже при концентрациях свыше 250 мг/л; в случае хлоридов кальция и магния соленость воды возникает при концентрациях свыше 1000 мг/л. Именно по органолептическому показателю – вкусу установлена ПДК для питьевой воды по хлоридам (350 мг/л), лимитирующий показатель вредности – органолептический.

Большие количества хлоридов могут образовываться в промышленных процессах концентрирования растворов, ионного обмена, высаливания и т.д., образуя сточные воды с высоким содержанием хлорид-аниона.

Высокие концентрации хлоридов в питьевой воде не оказывают токсического воздействия на человека, хотя соленые воды очень коррозионно активны по отношению к металлам, пагубно влияют на рост растений, вызывают засоление почв.

Метод определения массовой концентрации хлорид-аниона описан в ПНД Ф 14.1:2.96-97 (издание 2004 г.) «Методика выполнения измерений содержаний хлоридов в пробах природных и очищенных сточных вод аргентометрическим методом» и ИСО 9297:1989 «Качество воды. Определение содержания хлорида. Титрование нитратом серебра с хроматным индикатором (метод Мора)». Он основан на титровании хлорид-анионов раствором нитрата серебра, в результате чего образуется суспензия практически нерастворимого хлорида серебра. Уравнение химической реакции записывается как

Ag + + Cl - ® AgCl¯

В качестве индикатора используется хромат калия, который реагирует с избытком нитрата серебра с образованием хорошо заметного оранжево-бурого осадка хромата серебра по уравнению

Ag + + CrO 4 - ® Ag 2 CrO 4 ¯

оранжево-бурый

Данный метод получил название метода аргентометрического титрования. Титрование можно выполнять в пределах рН 5,0–8,0.

Массовую концентрацию хлорид-аниона С ХЛ (в мг/л) вычисляют по уравнению

где V ХЛ – объем раствора нитрата серебра, израсходованный на титрование, мл;

Н – концентрация титрованного раствора нитрата серебра с учетом поправочного коэффициента, г-экв/л.;

V A – объем воды, взятой на анализ, мл;

35,5 – эквивалентная масса хлора;

1000 – коэффициент пересчета единиц измерений из г/л в мг/л.

3.7.4. Сухой остаток

Сухой остаток характеризует содержание в воде нелетучих растворенных веществ (главным образом минеральных) и органических веществ, температура кипения которых превышает 105 - 110°С. Сухой остаток определяют гравиметрическим (ПНД Ф 14.1:2.114-97 (издание 2004 г.) «Методика выполнения измерений массовой концентрации сухого остатка в пробах природных и очищенных сточных вод гравиметрическим методом») и расчетным методами.

Перед определением сухого остатка пробу необходимо фильтровать либо отстаивать для отделения от взвешенных веществ.

Гравиметрический (весовой) метод основан на определении веса высушенного остатка, полученного после выпаривания пробы. Сначала проводят выпаривание основной массы пробы, которая может составлять 250–500 мл. Далее оставшуюся часть пробы высушивают во взвешенной, доведенной до постоянной массы чашке (стакане, тигле) в сушильном шкафу в стандартных условиях в два этапа.

На первом этапе высушивание проводят при температуре 103 - 105°С в течение 1–2 часов. При этом удаляются влага и все летучие органические вещества, однако сохраняется почти вся кристаллизационная вода солей – кристаллогидратов.

На втором этапе высушивание проводят при температуре 178 - 182°С также в течение 1–2 часов. В этих условиях разлагаются кристаллогидраты, более полно испаряются и разлагаются органические вещества, разлагаются также некоторые соли, например гидрокарбонаты до карбонатов и далее до оксидов (частично или полностью).

Величину сухого остатка определяют по разности масс остатка пробы до и после высушивания, причем иногда выполняют промежуточное взвешивание – после высушивания при температуре 103–105°С. Взвешивание выполняют на аналитических весах с погрешностью не более ±1 мг (лучше ±0,1 мг). Перед взвешиванием тигель необходимо охладить до комнатной температуры.

Для определения сухого остатка поверхностных природных вод обычно достаточно высушивания при температуре 103 - 105°С. Высушивание при температуре 178 - 182°С применяется при детальном исследовании природных или сточных вод.

Величину сухого остатка можно также оценить расчетным методом. При этом необходимо суммировать полученные в результате анализов концентрации растворенных в воде минеральных солей, а также органических веществ (гидрокарбонат-ион суммируется в количестве 50%). Для питьевой и природной воды величина сухого остатка практически равна сумме массовых концентраций анионов (карбоната, гидрокарбоната, хлорида, сульфата) и катионов (кальция и магния, а также определяемых расчетным методом натрия и калия).

Величина сухого остатка для поверхностных вод водоемов хозяйственно-питьевого и культурно-бытового водопользования не должна превышать 1000 мг/л (в отдельных случаях допускается до 1500 мг/л).

3.7.5. Общая жесткость, кальций и магний

Жесткость воды – одно из важнейших свойств, имеющих большое значение при водопользовании (см. п.1.4.4). Если в воде находятся ионы металлов, образующие с мылом нерастворимые соли жирных кислот, то в такой воде затрудняется образование пены при стирке белья или мытье рук. Жесткость воды приводит к образованию накипи на трубопроводах в тепловых сетях.

Величина жесткости может варьироваться в широких пределах, в зависимости от типа пород и почв, слагающих бассейн водосбора, а также от сезона года и погодных условий от 0,1-0,2 ммоль/л в озерах и реках тундры до 80-100 ммоль/л в морях и океанах.

Допустимая величина общей жесткости для питьевой воды и источников централизованного водоснабжения составляет не более 7 ммоль-экв/л (в отдельных случаях – до 10 ммоль-экв/л), лимитирующий показатель вредности – органолептический.

В России используется ПНД Ф 14.1:2.98-97 (издание 2004 г.) «Методика выполнения измерений жесткости в пробах природных и очищенных сточных вод титриметрическим методом». Метод основан на реакции солей кальция и магния с трилоном Б (динатриевой солью этилендиаминтетрауксусной кислоты) в аммиачном буферном растворе с рН = 10,0 – 10,5 в присутствии эриохрома черного Т в качестве индикатора:

Ca 2+ + Na 2 H 2 R ® Na 2 CaR + 2H +

Mg 2+ + Na 2 H 2 R ® Na 2 MgR + 2H + ,

где R – радикал этилендиаминтетрауксусной кислоты (- OCCH 2) 2 NCH 2 CH 2 N(CH 2 CO -) 2 .

Общую жесткость С ОЖ (в ммоль-экв/л) вычисляют по формуле

где С ОЖ – общая жесткость воды, ммоль-экв/л;

С 1 – концентрация раствора трилона Б, моль-экв/л;

V 1 – объем раствора трилона Б, израсходованного на титрование анализируемой пробы, мл;

V – объем пробы воды, взятой для определения, мл.

Метод определения массовой концентрации катиона кальция согласно РД 52.24.403-2007 «Массовая концентрация кальция в водах. Методика выполнения измерений титриметрическим методом с трилоном Б» и ИСО 6058:1984 «Качество воды. Определение содержания кальция комплексонометрическим титриметрическим методом» аналогичен методу определения общей жесткости с той разницей, что анализ проводится в сильнощелочной среде (рН = 12 – 13) в присутствии индикатора мурексида. Определению кальция мешают карбонаты и диоксид углерода, удаляемые из пробы при ее подкислении.

Для определения содержания магния в незагрязненных поверхностных и грунтовых природных водах применяют расчетный метод, основанный на разности результатов определения общей жесткости и концентрации катиона кальция. Для анализа загрязненных вод на содержание магния необходимо применять его прямое определение.


3.7.6. Натрий и калий

Массовую концентрацию катиона натрия С Na (в мг/л) определяют расчетным методом согласно формуле

С Na = (А-С ОЖ)×23, (17)

где А – сумма массовых концентраций главных анионов, определяемая с использованием данных табл. 12, мг-экв/л;

С ОЖ – значение общей жесткости, моль-экв/л;

23 – эквивалентная масса натрия.

Концентрацию катиона калия для природных вод условно учитывают в виде концентрации катиона натрия С KNa .

3.7.7. Общее солесодержание

Для расчета общего солесодержания по сумме концентраций главных анионов в ммоль-эквивалентной форме их массовые концентрации, определенные при анализе и выраженные в мг/л, умножают на коэффициенты, приведенные в табл. 11, после чего суммируют.

Таблица 11. Коэффициенты пересчета концентраций

из мг/л в ммоль-экв/л

Минеральные водыприродные воды, химический состав и физические свойства которых (содержание минеральных реже органических компонентов, газов, радиоактивность и так далее) позволяют их использовать для лечения или профилактики болезней человека.

Лечебными минеральными водами называют природные воды, которые содержат в большом количестве те или иные минеральные вещества, различные газы (углекислоту, сероводород, азот и другие) или обладают, какими ни будь уникальными свойствами – радиоактивность, температурой и так далее.

Состав минеральных вод

Химические свойства минеральной воды определяются содержанием в них минеральных веществ, главным образом в виде анионов – хлора (CI), сульфата (SO), гидрокарбоната (HCO) и катионов – натрия (Na), магния (Mg), кальция (Ca) и других.

Минеральная вода содержит также газы – азот (N 2), метан (CH 4), углекислый газ (CO 2), реже сероводород (H 2 S) и другие. Суммарное содержание в минеральной воде всех указанных выше веществ (без газов) составляет минерализацию воды.

К физическим свойствам минеральной воды относится температура, радиоактивность, обусловленная содержанием радона (Rn). Кислотно-щелочное состояние вод определяется величиной рН.

Наименование минеральной воды по газовому и ионному составу даётся в определённой последовательности: в порядке нарастания содержания отдельных компонентов то есть от меньшего к большему. Например, при содержании азота – 20 и метана – 70%, сульфата – 25, хлора – 60, кальция – 30 и натрия 65% вода называется азотно-метановой сульфатно-хлоридной кальциево-натриевой.

Классификация минеральной воды

На основе изучения химического состава и свойств минеральных вод были разработаны нормы оценки минеральной воды по химическому составу и физическим свойствам.

Показатели Норма оценки Наименование вод
Минерализация г/л
< 2.0 Слабоминерализованные
> 2.0 – 5.0 Маломинерализованные
> 5.0 – 10.0 Среднеминерализованные
> 10.0 – 35.0 Высокоминерализованные
> 35.0 – 150.0 Рассольные
>150.0 Крепкие рассольные
Газонасыщенность в мл/л
< 50 Очень слабо газонасыщенные
> 50 – 100 Слабогазонасыщенные
> 100 – 1000 Среднегазонасыщенные
> 1000 Высокогазонасыщенные
Содержание специфических компонентов:
0,5 – 1,4 Слабоуглекислые
> 1.4 – 2.5 Среднеуглекислые
Углекислый газ (СО2 растворённый) в г/л > 2.5 Сильноуглекислые
Сероводород и гидросульфид (Н2S + НS) в мг/л
10 – 50 Слабосульфидные
> 50 – 100 Среднесульфидные
> 100 – 250 Крепкие сульфидные
> 250 - 500 Очень крепкие сульфидные
> 500 Ультракрепкие сульфидные
Мышьяк (As) в мг/л
0,7 - 5,0 Мышьяковистые (мышьяковые)
> 5,0 - 10,0 Крепкие мышьяковистые (мышьяковые)
> 10,0 Очень крепкие мышьяковистые
Железо закисное и окисное в мг/л
20,0 - 40,0 Железистые
> 40,0 - 100,0 Крепкие железистые
> 100,0 Очень крепкие железистые
Бром (Br) в мг/л > 25 Бромные
Йод (I) в мг/л > 5 Йодные
Кремниевая кислота и гидросиликат в мг/л > 50 Кремнистые
Радон (Rn) в нкюри
5 - 20 Очень слабо радоновые
> 20 - 40 Слаборадоновые
>40 - 200 Среднерадоновые
> 200 Высокорадоновые
Реакция воды, рН
< 3,5 Сильнокислые
> 3,5 - 5,5 Кислые
> 5,5 - 6,8 Слабокислые
> 6,8 - 7,2 Нейтральные
> 7,2 - 8,5 Слабощелочные
> 8,5 Щелочные
Температура С
< 20 Холодные
> 20 - 35 Тёплые (слаботермальные)
> 35 - 42 Горячие (термальные)
> 42 Очень горячие (высокотермальные)

Разновидности минеральной воды

В соответствии с особенностями состава и характером воздействия на организм выделяют воды для наружного и внутреннего применения. Минеральная вода для наружного применения часто обладает большой минерализацией и обогащены специфическими компонентами. Питьевые минеральные воды имеют обычно небольшую минерализацию (2 – 12 г/л) и оказывают лечебное действие благодаря своему ионному составу и наличию специфических компонентов. В зависимости от степени минерализации питьевые минеральные воды разделяют на лечебно-столовые минеральные воды с минерализацией 2 – 8 г/л и лечебные воды с минерализацией 8 – 12 г/л, редко выше.

Типы минеральных вод

Углекислые воды

Углекислыми лечебными и бальнеологии считаются такие воды, которые содержат не менее 0,5 г/л углекислого газа. Для внутреннего применения используются воды с содержанием растворённого углекислого газа не менее 0,5 г/л, а для наружного применения - не менее 1,4 г/л.

Сероводородные воды

Сероводородные (сульфидные) минеральные воды - природные воды различной минерализаций и ионного состава, содержащие более 10 мг/л общего сероводорода. Они используются в лечебных целях. В зависимости от степени диссоциации сероводорода различают следующие разновидности минеральных вод:

1. собственно сероводородные, содержащие недиссоциированный сероводород;

2. гидросульфидные, содержащие преимущественно HS;

3. гидросульфидно-сероводородные.

Радоновые минеральные воды

Радиоактивные (радоновые) минеральные воды - природные или искусственно приготовленные воды, которые содержат радиоактивный химический элемент радон. Их относят к лечебным, если радиоактивность радона в них превышает 185 Бк/л.

Среди радиоактивного типа вод выделяют: радоновые, радиевые, урановые, радоно-радиевые, радоно-урановые и радоно-радиево-урановые.

Йодобромные воды

Йодными и бромными (или йодобромными) считаются такие воды, которые содержат не менее 5 мг/л йода и не менее 25 мг/л брома при их минерализации (для хлоридных вод) до 10 - 15 г/л. При более высокой минерализации воды считается бромными и йодными, если при их разбавлении пресной водой до минерализации 10 - 15 г/л содержание йода и брома не будет ниже указанных норм. Используются они в бальнеологии для внутреннего и наружного применения.

Кремнистые термы

Кремнистые термы (азотные термальные воды) - обычно содержат в повышенных количествах H 2 SiO 3 и другие микроэлементы (Fe, As, F, B и другие). Кремнистыми термами принято считать минеральные воды, содержащие H 2 SiO 3 более 50 мг/л с температурой выше 35 С.

По концентрации кремниевой кислоты (в мг/л) выделяют 3 подгруппы минеральных вод.

1. Кремнистые 50 - 100.

2. Высококремнистые 100 - 150.

3. Очень высококремнистые более 150.

Бальнеологические свойства кремниевой кислоты были впервые признаны в СССР на примере азотных щелочных терм Кульдура, которые приняты в качестве критерия оценки лечебных свойств, данного типа минеральных вод. Лечебные свойства минеральных вод, используемых для наружного применения, определяется также их температурой.

Минеральные воды, обогащённые органическим веществом

Среди вод, лечебные свойства которых определяются растворёнными в них органическими веществами, наиболее изучены воды "Нафтуся" курорта Трусковец в Западной Украине. При оценке лечебных свойств слабоминерализованных минеральных вод типа "Нафтуся" в качестве основного показателя принимают суммарное содержание органического углерода.

К минеральным лечебным питьевым водам типа "Нафтуся" относятся слабоминерализованные (0,3 - 1 г/л) гидрокарбонатные различного катионного состава воды с низким газосодержанием (до 100 мг/л), в которых в качестве бальнеологического компонента содержится 10 - 20 мг/л органических веществ.

К водам типа "Нафтуся" отнесены воды (кроме Трусковецкого месторождения) Березовского, Сходницкого, Збручанского месторождений Украины, Ундорского источника в Ульяновской области, Калааты и Тенгиалты в Азербайджане.

Железистые воды

Для отнесения воды к минеральной железистой по ГОСТ 13273-88 содержание биологически активного компонента - железа должно составлять не менее 10 мг/дм 3 . Железо необходимо для построения клеток, роста организма, переноса кислорода. Оно представляет собой основной катализатор дыхательных процессов и влияет на образование гемоглобина. В организме человека содержится около 3 грамм железа, из которых 75% входит в состав гемоглобина.

Как мы видим - мир минеральных вод богат и разнообразен. Каждому человеку желательно индивидуально определиться с предпочтениями той или иной минеральной воды, так как природные воды имеют очень разнообразный состав и соответственно одному человеку могут улучшить здоровье и качество жизни, а другому резко ухудшить и спровоцировать болезни.

Дополнительные статьи с полезной информацией
Использование минеральной воды в лечебных целях

Минеральные воды имеют очень разнообразный состав в зависимости от источника. Правильно подбирая и используя минеральную воду можно влиять на здоровье человека в очень широком диапазоне, при самых различных заболеваниях.

Водно - солевой обмен у ребёнка

Процессы происходящие в организме человека зависят от наследственности и возраста. Организм ребёнка живёт и развивается по своим законам, которые сильно отличаются от правил жизни взрослого и пожилого организма.

Минеральные воды - сложные растворы, в которых вещества содержатся в виде ионов, недиссоциированных молекул, газов, коллоидных частиц.

Долгое время бальнеологи не могли прийти к единому мнению о химическом составе многих вод, поскольку анионы и катионы минеральных вод образуют очень нестойкие соединения. Как говорил Эрнст Резерфорд, «ионы - это веселые малыши, вы можете наблюдать их едва ли не воочию». Еще в 1860-х гг. химик О. Тан указал на неправильность солевого изображения минеральных вод, из-за чего Железноводск долго считали курортом с «неустановившейся репутацией». Вначале минеральные воды Железноводска причисляли к щелочно-железистым, затем стали комбинировать карбонаты со щелочами, а сульфаты - со щелочными землями, называя эти воды «щелочно-железистыми (содержащие натрий углекислый и железо) с преобладанием гипса (сульфата кальция) и соды (гидрокарбоната натрия). Впоследствии состав вод стали определять по основным ионам. Уникальные Железноводские источники по составу принадлежат к углекислым гидрокарбонатно-сульфатным кальциево-натриевым высокотермальным водам, мало содержащим хлористый натрий, что исключает опасность раздражения почечной ткани при их питьевом использовании. В настоящее время Железноводск считается одним из лучших «почечных» курортов. Железа в минеральных водах этого курорта содержится сравнительно мало, до 6 мг/л, т.е. меньше, чем в специфических железистых водах, в которых должно быть не менее 10 мг/л.

В немецкой «Курортной книге», изданной в 1907 г., анализы вод минеральных источников впервые были представлены в виде ионных таблиц. Такая же книга об австрийских курортах была издана в 1914 г. Этот тип представления минеральных вод принят в Европе в настоящее время. Как пример приводим ионный состав вод одного из самых популярных источников французского курорта Виши, известного со времен Римской империи - Vichy Celestins (М - 3,325 г./л; pH - 6,8).

Критерии для отнесения вод к «минеральным» в той или иной степени отличаются у разных исследователей. Всех их объединяет происхождение: то есть минеральные воды - это воды, добытые или вынесенные на поверхность из земных недр. На государственном уровне, в ряде стран ЕС законодательно утверждены определенные критерии причисления вод к категории минеральных. В национальных нормативных актах относительно критериев минеральных вод нашли свое отображение гидрогеохимические особенности территорий, которые присущи для каждой страны.

В нормативных актах ряда стран Европы и международных рекомендациях - «Кодекс Алиментариус», Директивах Европейского парламента и Европейского совета для стран - членов ЕС определение «минеральные воды» приобрело более широкое содержание.

Например, «Кодекс Алиментариус» дает следующее определение природной минеральной воды: природной минеральной водой является вода, которая четко отличается от обычной питьевой воды, так как:

  • · она характеризуется своим составом, включающим определенные минеральные соли, в определенном их соотношении, и наличием определенных элементов в следовых количествах или других компонентов;
  • · ее непосредственно получают из природных или пробуренных источников из подземных водоносных слоев, для чего необходимо соблюдение всех мер предосторожности в пределах зоны защиты во избежание попадания любого загрязнения либо внешнего влияния на химические, физические свойства минеральных вод;
  • · она характеризуется постоянством своего состава и стабильностью дебита, определенной температурой и соответствующими циклами второстепенных природных колебаний.

В России принято определение В.В. Иванова и Г.А. Невраева, данное в работе «Классификация подземных минеральных вод» (1964 г.).

К минеральным питьевым водам (в соответствии с ГОСТ 13273-88), относятся воды с общей минерализацией не менее 1 г/л или при меньшей минерализации, содержащие биологически активные микрокомпоненты в количестве не ниже бальнеологических норм.

Питьевые минеральные воды в зависимости от степени минерализации и интенсивности воздействия на организм разделяют на лечебно-столовые с минерализацией 2-8 г./л (исключением являются Ессентуки №4 с минерализацией 8-10 г./л) и лечебные воды с минерализацией 8-12 г./л, редко выше.

Минеральные воды, отнесенные в установленном порядке к категории лечебных, используются прежде всего в лечебных и курортных целях. Разрешение на использование лечебных минеральных вод для других целей в исключительных случаях выдается органами исполнительной власти субъектов Российской Федерации по согласованию со специально уполномоченным государственным органом управления использованием и охраной водного фонда, специально уполномоченным государственным органом, осуществляющим управление курортами, и федеральным органом управления государственным фондом недр.

В зависимости от развития представлений о составе и свойствах природных вод и их лечебном значении на протяжении многих лет разрабатывались критерии, позволяющие относить ту или иную воду к минеральной. Оценка минеральных вод проводится по разным квалификационным показателям. В качестве основных критериев оценки лечебной ценности минеральных вод в курортологии приняты особенности их химического состава и физических свойства (показатель общей минерализации, преобладающие ионы, повышенное содержание газов, микроэлементов, величина кислотности и температура источника) которые одновременно служат важнейшими показателями для их классификации.

Оскоева Марианна, учащаяся 11 класса.

Кавказские Минеральные Воды - регион Ставропольского края, богатый разными минеральными водами. В данной работе учащаяся охарактеризовала и исследовала минеральные воды не только добываемые на территори КМВ, но и в других районах нашей страны. "Минеральная аода - богатство подаренное нам природой!".

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение «Иноземцевская средняя общеобразовательная школа №4 имени А. М. Клинового»

Города-курорта Железноводска Ставропольского края.


Тема работы:

«Исследование состава минеральной воды»

Работу выполнила:

Ученица 11 «А» класс

Оскоева Марианна

Руководитель проекта:

Ахатова Ольга Викторовна.

Железноводск 2016.

Введение …………………………………………………………………………….............2

Глава 1. Теоретическая часть ……………………………………………………………….4

Глава 2. Практическая часть………………………………………………………………..13

Выводы……………………………………………………………………………………….16

Заключение……………………………………………………………….….…..…………..17

Литература………………………………………………………………………..………….18

Приложения………………………………………………………………………………….19

Введение

«Воды таковы, каковы земли, через которые они проходят».

Аристотель

Минеральная вода - одно из древнейших природных лекарств, употребляемых людьми. У источников целебных минеральных вод веками существовали лечебницы, создавались всемирно известные курорты и санатории, позднее - заводы, поставляющие минеральную воду в бутылках по всему миру. В чем польза минеральной воды, сохраняют ли минеральные воды свое лечебное значение и сегодня, в эпоху изобилия лекарств? Где брать эти воды, как ими пользоваться, как избежать подделок? .

Природные полезные свойства минеральной воды уникальны, ведь они формировались в недрах земли, в совершенно особых условиях. Они проходят естественную обработку различными горными породами, высокими температурами, растворенными газами, всевозможными энергетическими полями. Эти воды несут огромную информацию в своем составе, структуре и свойствах. Именно этим объясняются их неповторимые вкусовые и оздоравливающие качества. А поскольку искусственно воссоздать условия подземной природной лаборатории невозможно, никакой комплекс минералов не сравнится с природной минеральной водой.

К тому же вообще чистая вода - это сейчас огромная ценность, не случайно в магазинах она дороже бензина. В Европе почти не осталось источников чистой воды, и воду из-под крана они не пьют, только бутилированную из скважин. А минеральная вода - чистая .

Актуальность

Многообразие минеральной воды, представленной на полках магазинов, способно ввести в заблуждение кого угодно. В своей исследовательской работе я решила экспериментально узнать, какая из минеральных вод наиболее полезна и безопасна для нашего организма.

Гипотеза . Все ли виды минеральных вод обладают лечебными свойствами и как они влияют на развитие живых организмов.

Цель исследования . Изучить состав минеральных вод и их воздействие на живые клетки растений.

Объект исследования . Семена салата - Эрука посевная (индау) Спартак.

Предмет исследования . Минеральные воды марки: «Есентуки №17», «Эдельвейс», «Бон Аква», «Нарзан», «Демидовская Целебная», «Краинская».

Задачи исследования:

1 . Выяснить источники минеральных вод.

2.Изучить классификацию и способы применения минеральных вод.

3.Применить полученные знания для правильного использования минеральных вод.

4.Сравнить минеральные воды разных производителей.

Методы исследования:

1.Провести обзор литературы по данной теме.

2.Проведение анализа состава различных марок минеральной воды.

3. Изучение влияния минеральной воды на развитие живых организмов.

4.Выявление лечебных свойств воды и правила её использования.

1 Глава 1. Теоретическая часть

  1. Лечебный эффект питьевого применения минеральных вод

Минеральная вода – вода, содержащая биологически активные минеральные и органические компоненты, обладающая специфическими физико-химическими свойствами. Питьевые минеральные воды поступают из природных источников, в растворе которых содержаться различные полезные газы и соли. Они бьют из земли, часто имеют высокую температуру.

При питье минеральная вода оказывает многообразное действие. Раздражая многочисленные рецепторы слизистой оболочки полости рта и желудка, минеральная вода влияет не только на слюноотделение, но и на структурную и моторную функции желудка и кишечника, функциональное состояние мочеотделительной и других систем. Одновременно (особенно в верхних отделах кишечника) происходит всасывание выпитой минеральной воды и поступление ее в лимфатическую и кровеносную системы. Это приводит к изменению химического состава и кислотно-щелочного равновесия жидкостей и тканей, усиливает образование биологически активных веществ, что в конечном счете сказывается на функциональной активности многих органов и систем, на течении обменных процессов в организме.
В эффекте питьевого лечения важную роль играет действие химических компонентов минеральных вод на состояние главных пищеварительных желез, на эндокринную систему органов пищеварения. В частности, питье минеральных вод стимулирует выделение клетками желудка гормона гастрина, который обладает выраженным физиологическим действием .

1.2 Химические элементы, входящие в состав минеральных вод, их значение для человека

При покупке минеральной воды нужно ориентироваться не только на её вкусовые качества, но и на химический состав. Химический состав минеральной воды представляет собой, в первую очередь, разнообразные комбинации из шести основных компонентов: натрий (Na) , кальций (Са), магний (Мg), хлор (Сl), сульфат (SO4) и гидрокарбонат (НСО3).

Двуокись углерода (угольный ангидрид) также является важным компонентом минеральной воды, так как за счёт взаимодействия углекислого газа с подземными породами и формируются лечебные свойства воды. Углекислый газ, кроме того, смягчает вкус напитка и способствует лучшему утолению жажды. Он также стабилизирует химический состав минеральной воды, поэтому для сохранения всех полезных свойств её перед розливом дополнительно насыщают двуокисью углерода.

В небольших количествах в минеральной воде содержится почти вся таблица Менделеева в микро- и ультрамикродозах. В наибольшем количестве в ней представлены: железо, йод, фтор, бром, мышьяк, кобальт, молибден, медь, марганец и литий. Они в свою очередь тоже оказывают влияние на человека, и притом каждый своё .

Хлор влияет на выделительную функцию почек.

Калий и натрий поддерживают необходимое давление в тканевых и межтканевых жидкостях организма.

Йод активизирует функцию щитовидной железы, участвует в процессах рассасывания и восстановления.

Бром усиливает тормозные процессы, нормализуя функцию коры голового мозга.

Железо входит в структуру гемоглобина, его недостаток в организме приводит к анемии.

Медь помогает железу переходить в гемоглобин.

1.3. Лечебный эффект питьевого применения минеральных вод

В эффекте питьевого лечения важную роль играет действие химических компонентов минеральных вод на состояние главных пищеварительных желез, на эндокринную систему органов пищеварения. В частности, питье минеральных вод стимулирует выделение клетками желудка гормона гастрина, который обладает выраженным физиологическим действием.

Болезни желудка

Какими только болезнями не страдает наш бедный желудок. Минеральная вода - самый лучший лекарь. Она помогает восстановить желудочные выделения.
Для лечения необходимо выпивать по 5 мл на 1 кг массы 3 раза в день. Ее обязательно нужно подогреть до 28 градусов и выпивать натощак за 35-40 минут до еды, медленно, небольшими глоточками.

С язвой гораздо сложнее. Не каждой язве полезна минералка. Желудочные кровотечения, обострения болезни двенадцатиперстной кишки - не время для лечения водой. А вот когда обострение затухнет, поддержите больной желудок. Периоды обострений болезни - не что иное, как повышенная возбудимость желудочных функций. Успокоить разбушевавшийся желудок может теплая минеральная вода, из которой удаляется углекислый газ. Пить такую воду следует с учетом секреторной функции желудка по методу, описанному выше.

Болезни кишечника

Больной кишечник - большие неприятности. Некоторые минеральные воды - прекрасное слабительное средство. Выпивая по стакану воды за 40-60 минут до еды 3 раза в день, Вы заставите Ваш кишечник работать как часы.
Перед употреблением обязательно подогрейте воду до 40-45 градусов.

Болезни мочеполовой системы

Ваши камушки в почках не дают вам покоя, возникли проблемы с мочеполовой системой?! Не забудьте о природной лечебно-столовой воде. Она оказывают противовоспалительное действие, помогает прочистить почки и мочевые пути, облегчая выход камней. Воду принимают только в подогретом виде (до 38-42 градусов), натощак, за полчаса до еды. Однако процесс лечения требуют более частого питья указанных минеральных вод и в больших количествах для обеспечения режима частых мочеиспусканий (по 250 – 300 мл, 3-4 раза в день).

Лечение диабета

Общепринято больным сахарным диабетом питье минеральных вод 3 раза в день: перед завтраком, обедом и ужином за 45 - 60 минут до приема пищи. Помимо питьевого лечения при сахарном диабете могут быть использованы и другие методы внутреннего применения минеральных вод: введение через дуоденальный зонд, лечебные клизмы, сифонные промывания кишечника.

Болезни печени

При болезнях печени (например, вирусный гепатит, гепатоз) минеральная вода незаменима. Она помогает восстановить функции клеток печени. Воды придется пить больше, чем при других болезнях. Пьют ее 3 раза в день, обязательно в подогретом виде (40-45°С) в постепенно возрастающей дозе по полтора - два стакана за один прием. Вид минеральной воды следует выбирать, как описано выше, в зависимости от исходной секреторной функции желудка.

При ожирении

Людям, страдающим ожирением, необходимо прежде всего много пить: в их организме содержание воды сильно понижено. Рекомендуется употреблять по 150 - 200 мл минеральной воды комнатной температуры, 3 раза в день, за 45 - 60 минут до еды, предварительно выпустив весь углекислый газ .

1.4 Классификация минеральных вод

а) По содержанию минеральных веществ минеральные воды делятся на:

  • столовые (содержащие солей до 1 г на литр), которые можно пить сколько угодно;
  • лечебно-столовые (2–8 г на литр). Они годятся и когда просто хочется пить, и если здоровье подправить нужно. Обычно такие воды прописывает врач, но их можно использовать как столовые с одной оговоркой – «несистематически». К лечебно-столовым водам относится и вода «Хан- Куль».
  • лечебные (уровень солей больше 10 г на литр). Это уже лекарство, которое требует рекомендации врача. Да и по вкусу она такая, что просто так пить ее не захочешь. На организм человека эти воды оказывают сильное воздействие. Их пьют в строго оговоренном количестве – столовая, а то и чайная ложка в день!
  • воды бальнеологического назначения для наружного применения (для ванн), которые подразделяются на высокоминерализованные с М=10,1-35 г/л (35 г/л - минерализация вод Мирового океана), рассольные с М = 35,1-150 г/л, крепкие рассолы с М = 150,1-600 г/л и очень крепкие рассолы с М > 600 г/л. В отечественной бальнеотерапии применяются воды, разбавленные до минерализации 18-20 г/л (минерализация вод Черного моря).

б) По температуре различаются:

  • холодные, t
  • теплые, t = 21-36°С;
  • горячие (термальные), t=37-42°С;
  • очень горячие (высокотермальные), t > 42°С минеральные воды.
  • Высокотермальные воды достигают температуры более 90°С.

в) Классификация минеральных вод в зависимости от газового состава и наличия специфических элементов:

  1. Углекислые (кислые) минеральные воды
  2. Сульфидные (сероводородные) минеральные воды
  3. Бромистые минеральные воды
  4. Йодистые минеральные воды
  5. Мышьяковистые минеральные воды
  6. Радиоактивные (радоновые) минеральные воды

г) Классификация по ионному составу

  • Бикарбонатная вода (содержит: более 600 миллиграммов бикарбонатов на литр).
  • Сульфатная вод (содержит: более 200 миллиграммов сульфатов на литр).
  • Хлоридная вода (содержит: более 200 миллиграммов хлоридов на литр).
  • Магниевая вода (содержит: более 50 миллиграммов магния на литр).
  • Фторная вода (содержит: более 1 миллиграмма фтора на литр).
  • Железистая вода (содержит: более 1 миллиграмма железа на литр).
  • Кислая вода (содержит: более 250 миллиграммов ангидридов углекислоты на литр).
  • Натриевая вода (содержит: более 200 миллиграммов натрия на литр).

1.5 Фальшивка. Как распознать её?

В таблице 1 представлено содержание о минеральных водах из этикеток.

Таблица 1.

Есентуки №17

Эдельвейс

Бон Аква

Нарза

Демидовская Целебная

Краинская

1.Стана– изготовитель

2.Наименование источника

3.Тип: газированная или негазированная

4.Оббьем в литрах

5.Тованый знак

6.Химический состав воды

7.Назначение воды

8.Условия хранение

Анализ таблицы показал, что этикетки содержат полную информацию о минеральных водах. «Бон Аква» является питьевой водой 1 категории, остальные воды – лечебно-столовые.

1.6.Минеральные воды

1)Есентуки №17 лечебная хлоридно-гидрокарбонатная натриевая, борная природная питьевая минеральная вода высокой минерализации (10,0–14,0 г/л). Источник - Ессентукское месторождение, город Ессентуки, Ставропольский край, скважины № 17-бис, 36-бис, 46, относится к группе XXVа.
Минеральная вода «Ессентуки № 17» содержит (мг/л):

Анионы

Катионы

гидрокарбонат HCO 3 – - 4900–6500

кальций Ca 2+ - 50–200

сульфат SO 4 2− - менее 25

магний Mg 2+ - менее 150

хлорид Cl − - 1700–2800.

натрий + калий Na + +K + - 2700–400

Борная кислота H 3 BO 3 - 40–90.

Растворенный в добываемой воде углекислый газ - 500–2350

Минеральная вода «Ессентуки № 17» показана для лечения следующих заболеваний (вне фазы обострения):

2.Эдельвейс – вода минеральная природная питьевая лечебно – столовая. Газированная хлоридно-сульфидная натриевая. Скважины: №№ 3/02, 12/95, 15/95 в г. Липецке, Россия.

Химический состав, мг/ :

Анионы

Катионы

сульфат SO 4 2− 1200-1700

натрий + калий Na + +K + - 1000-1300

хлорид Cl – 750-1000

кальций Ca 2+ - 80-150

гидрокарбонат HCO 3 – 200-400

магний Mg 2+

Минерализация 3,0 -4,5 г/ допускается осадок минеральных солей.

  • болезни пищевода
  • хронический гастрит
  • болезни кишечника
  • болезни поджелудочной железы
  • болезни обмена веществ
  • болезни мочевыводящих путей

3.Бон Аква – чистая питьевая вода первой категории. Скважины № 54200247, №54200248, № 54200250, г.Орел, Россия.

Химический состав, мг/л.

Анионы

Катионы

сульфат SO 4 2−

натрий + калий Na + +K +

хлорид Cl –

кальций Ca 2+ -

гидрокарбонат HCO 3 –

магний Mg 2+

Общая минерализация 50-500 мг/л. Общая жесткость 1,5 – 7мг-экв/л

4.Нарзан – вода минеральная питьевая природная, лечебно-столовая сульфатно-гидрокарбонатная, магннево-кальциевая (содержание биологически активного компонента С менее 3000 мг/л), группа Х. Кисловодское месторождение, скважины 7-РЭ, 107/Д, 5/0, 5/0бис, 2Б-бис.

Химический состав, мг/л:

Анионы

Катионы

сульфат SO 4 2− 250-500

натрий + калий Na + +K + 50-200

хлорид Cl – 50-200

кальций Ca 2+ - 200-500

гидрокарбонат HCO 3 – 1000-1700

магний Mg 2+ - 50-250

Минерализация, г/л: 2,0-3,5, допускается естественный осадок минеральных солей.

Минеральная вода «Эдельвейс» показана для лечения следующих заболеваний (вне фазы обострения):

  • болезни органов пищеварения,
  • проблемы с обменом веществ,
  • болезни почек,
  • цистит,
  • уретрит,
  • нарушения в нервной системе,
  • заболевания сердечнососудистой системы,
  • ожирение.

5.Демидовска Целебная – вода минеральная питьевая, лечебно-столовая, сульфатная магниево-кальциевая. Скважина №70401001, №70401697, Тульская область, Суворовский р-н, п.Черепеть.

Химический состав, мг/л:

Анионы

Катионы

сульфат SO 4 2− 800-1800

натрий + калий Na + +K +

хлорид Cl –

кальций Ca 2+ - 300-550

гидрокарбонат HCO 3 – 200-400

магний Mg 2+ - 100-250

Минерализация, г/л: 1.4-3.2 допускается незначительный естественный осадок минеральных солей.

Минеральная вода «Демидовская Целебная» показана для лечения следующих заболеваний (вне фазы обострения):

  • болезни пищевода
  • хронический гастрит
  • язвенная болезнь желудка и 12-перстной кишки
  • болезни кишечника
  • болезни желочного пузыря и печени
  • болезни поджелудочной железы
  • болезни обмена веществ
  • болезни мочевыводящих путей

6.Краинская - лечебно-столовая сульфатная кальциевая минеральная природная питьевая вода малой минерализации из скважины 4/84 Краинского месторождения, расположенной на территории курорта Краинка, Суворовский район Тульской обл.

Химический состав, мг/л:

Анионы

Катионы

гидрокарбонат HCO 3 – - 200–300

кальций Ca 2+ - 500–650

сульфат SO 4 2− - 1400–1600

магний Mg 2+ -

хлорид Cl − -

натрий + калий Na + +K + -

Общая минерализация воды - 2,2–2,8 г/л.

Минеральная вода «Краинская» показана для лечения следующих заболеваний (вне фазы обострения):

Глава 2. Практическая часть

2.1 Определение состава минеральной воды

В своей исследовательской работе я изучила минеральные воды следующих фирм (рис.1):

№2- «Эдельвейс»,

№3 - «Бон Аква»,

№4 - «Нарзан»,

№5 - «Демидовская Целебная»,

№6 – «Краинская».

Приложение 1

Для того что бы понять полезной ли является минеральная вода или же приносит вред. Я решила разобраться в составе минеральной воды. На этикетках написан определенный состав минеральной воды. Согласно этому составу были поставлены следующие опыты.

2.1.2 Определение ph минеральной воды

Для определение ph мы брали 6 пробирок и наливали в каждую пробирку по одному виду минеральной воды и макали в воду лакмусовую бумажку. После 3-4 минут мы сравнили результаты со школой ph (рис. 2). После чего записывали результаты в таблицу №2 . В результате проведения опытов я определила что phрастворов минеральных вод ближе к слабо-щелочному или нейтральному и является доказательством того что вода является безопасной для внутреннего восприятия (рис.3).

Таблица 2

Название

Есентуки №17

Эдельвейс

Бон Аква

Нарза

Демидовская Целебная

Краинская

Приложение 2

Приложение 3

2.1.3 Определение сульфат - ионов в минеральной воде

Чтобы узнать существуют ли воде сульфаты или это всего лишь обман,

написанный на этикетке, нужно в чистые пробирки налить воду и добавить в неё Ba . (рис. 4) . Результаты внесли в таблицу 3.

Таблица 3

Название минеральной воды

Есентуки №17

помутнение

Эдельвейс

помутнение

Бон Аква

помутнение

Нарзан

помутнение

Демидовская Целебная

помутнение

Краинская

помутнение

Приложение 4

2.1.4. Определение хлорид - ионов в минеральной во де . Для определения иона мы добавили Ag (рис.5) и полученные результаты реакции записали в таблицу 4.

Таблица 4

Название минеральной воды

Есентуки №17

осадок

Эдельвейс

осадок

Бон Аква

помутнение

Нарзан

осадок

Демидовская Целебная

помутнение

Краинская

помутнение

Приложение 5

2.1.5. Определение ионов серебра и карбонат – ионов в минеральной воде

Определяем катионы серебра, и анионы CO3. Добавим в чистые пробирки минеральную воду и добавляем HCl (рис.6). . Результаты так же занесли в таблицу 5.

Таблица 5

Название

Есентуки №17

без изменений

сильное выделение газа

Эдельвейс

без изменений

без изменений

Бон Аква

без изменений

сильное выделение газа

Нарзан

без изменений

сильное выделение газа

Демидовская Целебная

без изменений

без изменений

Краинская

без изменений

без изменений

Приложение 6

2.1.6 Влияние минеральной воды на растения

Для того чтобы понять действительно ли безвредной является минеральная вода мы решили взять семена салата - Эрука посевная (индау) Спартак. Так как клетки животных и растений очень похожи, то и взаимодействие на живые организмы должны быть похожи. Именно семена салата являются более чувствительными. Для проведения эксперимента я взяла 6 плоских крышек, промочив ватный диск каждой из образцов минеральной водой, выложила по 25-30 семян на блюдце (рис.7). Результаты записывали в таблицу 6.

Таблица 6

Наблюдаемые явления

посадка

набухли

появление побега

№1

27.04

29.04

30.04

№2

27.04

29.04

01.05

№3

27.04

29.04

29.04

№4

27.04

29.04

29.04

№5

27.04

29.04

30.04

№6

27.04

28.04

30.04

Из-за слишком большой концентрации солей в образце №1 и №2 «Есентуки №17» - 10,0–14,0 г/л. и «Эдельвейс» - 3-4,5 г/л соответстьвенно семена набухли, но появление проростка не произошло. А остальные образцы проросли. Особенно хорошо показал себя образец под №6 «Краинская».

Приложение 7

Выводы

1. Был изучен состав, назначение и свойства минеральных вод 6 марок: «Есентуки №17», «Эдельвейс», «Бон Аква», «Нарзан», «Демидовская Целебная», «Краинская».

Образец №1 «Есентуки№17» является лечебной, вода марки «Бон Аква» - питьевой, остальные воды – лечебно столовые.

2. Провели анализ состава минеральных вод. Исследования показали, что все образцы содержат сульфат - ионы и хлорид – ионы. Не в одном из образце, не был обнаружен катион серебра. Карбонат – ион был выявлен в образцах под № 1,3,4. Исходя из рН и минеральных веществ находящихся в воде, минеральная вода служит для добавления минералов и является полезной, так как рН среда составляет от 5 до 7,5.

3. Влияние минеральной воды на живые организмы показал, образцы под номерами 3, 4, 5, 6 провзаимодействовали с семенами дали побеги. Это объясняется тем, что данные воды лечебно-столовые и не превышают 10г на литр минеральных веществ. А объект №1 и №2 набухли, но не прорасли так как «Есентуки №17» и «Эдельвейс» относится к лечебным и лечебно-столовым водам соответственно, содержат много солей. Но всё же не является вредным для живого организма.

4. Минеральные воды исследуемых образцов соответствуют своему назначению и качеству.

Заключение

Итак, чем же служит для нас минеральная вода в организме? Вредна или полезна она для живых организмов? На эти вопросы я попыталась выяснить в своей исследовательской работе.

В воде, взятой из любого природного источника, всегда содержатся растворенные вещества. Путешествуя в подземных лабиринтах и встречая на своем пути различные горные породы и минералы, вода растворяет их, формируя свой химический состав. Обогатившись различными элементами или их соединениями, она превращается иногда в настоящий «эликсир здоровья».

Минеральные воды оказывают на организм человека лечебное действие всем комплексом растворенных в них веществ, а наличие специфических биологически активных компонентов и особых свойств определяют методы их лечебного использования. Большинство минеральных вод имеет смешанный состав, что повышает лечебный эффект при их правильном применении

Минеральная вода – это богатство подаренное нам природой. Её лечебные свойства известны с давних времен и определяются они, прежде всего тем, сколько в них содержится солей. Лечебно - столовая вода считается "обогощенной" минеральными солями и является профилактической водой от болезней. Лечебная же вода уже направленна на сбалансированный баланс минеральных солей и конкретное лечение заболевания. Они обладают определенным лечебным действием, но только при их правильном применении по совету врача. Неограниченное потребление такой воды может привести к серьезному нарушению солевого баланса в организме и к обострению хронических заболеваний. И именно по этим параметрам надо правильно употреблять минеральную воду.

Литература.

  1. Алимарина И. П. Методы обнаружения и разделения элементов, М., Изд-во Моск. ун-та, 1984, 208 с., 30 ил [Текст].
  2. Ганейзер Г. Е. Подземные воды нашей Земли, М., Просвещение, 1990[Текст].
  3. Львович М.И. «Вода и жизнь»: Москва, «Мысль» 1984г [Текст].
  4. Научный журнал «География и природные ресурсы» №2 СО РАН, Новосибирск, 1999 г.

Приложение 1

Рис.1 Минеральные воды

Приложение 2

Рис. 2 Шкала для определения ph

Приложение 3

Рис. 3 ph минеральной воды

Приложение 4

Рис. 4 Определение сульфат – ионов

Приложение 5

Рис.5 Определение хлорид – ионов

Приложение 6

Рис.6 Определение ионов серебра и карбонат – ионов

Приложение 7

Рис. 7 Влияние минеральной воды на растения

Цель исследования. Изучить состав минеральных вод и их воздействие на живые клетки растений. Задачи исследования: 1 . Выяснить источники минеральных вод. 2.Изучить классификацию и способы применения минеральных вод. 3.Применить полученные знания для правильного использования минеральных вод. 4.Сравнить минеральные воды разных производителей. Методы исследования: 1.Провести обзор литературы по данной теме. 2.Проведение анализа состава различных марок минеральной воды. 3. Изучение влияния минеральной воды на развитие живых организмов. 4.Выявление лечебных свойств воды и правила её использования.

2.1 Определение состава минеральной воды В своей исследовательской работе я изучила минеральные воды следующих фирм (рис.1): № 1- «Есентуки №17», № 2- «Эдельвейс», № 3 - «Бон Аква», № 4 - «Нарзан», № 5 - «Демидовская Целебная», № 6 – «Краинская». В эффекте питьевого лечения важную роль играет действие химических компонентов минеральных вод на состояние главных пищеварительных желез, на эндокринную систему органов пищеварения. В частности, питье минеральных вод стимулирует выделение клетками желудка гормона гастрина, который обладает выраженным физиологическим действием. Минеральные воды

2.1.2 Определение ph минеральной воды Для определение ph мы брали 6 пробирок и наливали в каждую пробирку по одному виду минеральной воды и макали в воду лакмусовую бумажку. После 3-4 минут мы сравнили результаты со школой ph (рис. 2). После чего записывали результаты в таблицу №2 . В результате проведения опытов я определила что ph растворов минеральных вод ближе к слабощелочному или нейтральному и является доказательством того что вода является безопасной для внутреннего восприятия (рис.3). Рис. 2 Шкала для определения ph Рис. 3 ph минеральной воды Таблица 2 Название Ph Есентуки №17 7,5 Эдельвейс 6 Бон Аква 5,5 Нарзан 7 Демидовская Целебная 5,5 Краинская 5,5

2.1.3 Определение сульфат - ионов в минеральной воде Чтобы узнать существуют ли воде сульфаты или это всего лишь обман, написанный на этикетке, нужно в чистые пробирки налить воду и добавить в неё BaС l 2 . (рис. 4) . Результаты внесли в таблицу 3. Название минеральной воды Есентуки №1 7 помутнение Эдельвейс помутнение Бон Аква помутнение Нарзан помутнение Демидовская Целебная помутнение Краинская помутнение Рис. 4 Определение сульфат – ионов Таблица 3

2.1.4. Определение хлорид - ионов в минеральной во де. Для определения иона Cl мы добавили Ag NO 3 (рис.5) и полученные результаты реакции записали в таблицу 4. Название минеральной воды Есентуки №17 осадок Эдельвейс осадок Бон Аква помутнение Нарзан осадок Демидовская Целебная помутнение Краинская помутнение Таблица 4 Рис.5 Определение хлорид – ионов

2.1.5. Определение ионов серебра и карбонат – ионов в минеральной воде Определяем катионы серебра, и анионы CO 3 . Добавим в чистые пробирки минеральную воду и добавляем HCl (рис.6). . Результаты так же занесли в таблицу 5. Из-за слишком большой концентрации солей в образце №1 и №2 «Есентуки №17» - 10,0–14,0 г/л. и «Эдельвейс» - 3-4,5 г/л соответственно семена набухли, но появление проростка не произошло. А остальные образцы проросли. Особенно хорошо показал себя образец под №6 «Краинская». Рис.6 Определение ионов серебра и карбонат – ионов Название Есентуки №17 без изменений сильное выделение газа Эдельвейс без изменений без изменений Бон Аква без изменений сильное выделение газа Нарзан без изменений сильное выделение газа Демидовская Целебная без изменений без изменений Краинская без изменений без изменений Таблица 5

2.1.6 Влияние минеральной воды на растения Для того чтобы понять действительно ли безвредной является минеральная вода мы решили взять семена салата - Эрука посевная (индау) Спартак. Так как клетки животных и растений очень похожи, то и взаимодействие на живые организмы должны быть похожи. Именно семена салата являются более чувствительными. Для проведения эксперимента я взяла 6 плоских крышек, промочив ватный диск каждой из образцов минеральной водой, выложила по 25-30 семян на блюдце (рис.7). Результаты записывали в таблицу 6. Из-за слишком большой концентрации солей в образце №1 и №2 «Есентуки №17» - 10,0–14,0 г/л. и «Эдельвейс» - 3-4,5 г/л соответстьвенно семена набухли, но появление проростка не произошло. А остальные образцы проросли. Особенно хорошо показал себя образец под №6 «Краинская». Наблюдаемые явления посадка набухли Появление побега № 1 27.04 29.04 № 2 27.04 29.04 № 3 27.04 29.04 29.04 № 4 27.04 29.04 29.04 № 5 27.04 29.04 30.04 № 6 27.04 28.04 30.04 Таблица 6 Рис. 7 Влияние минеральной воды на растения

Выводы. 1 Образец №1 «Есентуки№17» является лечебной, вода марки «Бон Аква» - питьевой, остальные воды – лечебно столовые. 2 Исследования показали, что все образцы содержат сульфат - ионы и хлорид – ионы. Не в одном из образце, не был обнаружен катион серебра. Карбонат – ион был выявлен в образцах под № 1,3,4. Исходя из рН и минеральных веществ находящихся в воде, минеральная вода служит для добавления минералов и является полезной, так как рН среда составляет от 5 до 7,5. 3 Влияние минеральной воды на живые организмы показал, что не является вредным для живого организма. 4 Минеральные воды исследуемых образцов соответствуют своему назначению и качеству. Заключение. Минеральные воды оказывают на организм человека лечебное действие всем комплексом растворенных в них веществ. Минеральная вода – это богатство подаренное нам природой. Лечебно - столовая вода считается "обогащенной" минеральными солями и является профилактической водой от болезней. Они обладают определенным лечебным действием, но только при их правильном применении по совету врача. Неограниченное потребление такой воды может привести к серьезному нарушению солевого баланса в организме и к обострению хронических заболеваний.

МИНЕРАЛЬНЫЕ ВОДЫ - природные воды, химический состав и физические свойства к-рых (содержание различных минеральных, реже органических, компонентов, газов, радиоактивность, кислая или щелочная реакция и др.) позволяют применять их в лечебно-профилактических целях.

СОСТАВ, РАСПРОСТРАНЕНИЕ И ЭКСПЛУАТАЦИЯ МИНЕРАЛЬНЫХ ВОД

Хим. свойства М. в. определяются содержанием в них различных минеральных веществ, гл. обр. в виде анионов - хлора (Cl), сульфата (SO 4), гидрокарбоната (HCO 3) и катионов - натрия (Na), магния (Mg), кальция (Ca) и др., что и обусловливает основной ионный состав вод. М. в. содержат также газы - азот (Na), метан (CH 4), углекислый газ (CO 2), реже сероводород (H 2 S) и др. Во многих М. в. присутствуют в виде ионов или не диссоциированных молекул специфические биологически активные компоненты и микрокомпоненты - углекислый газ (CO 2), сероводород (H 2 S), гидросульфид (HS), бром (Br), йод (I), мышьяк (As), железо (Fe), кремниевая к-та (H 2 SiO 3) и гидросиликат (HSiO 3 -), углерод органический (C) и нек-рые другие, придающие водам важные в бальнеол. отношении особенности. Суммарное содержание в М. в. всех указанных выше веществ (без газов) составляет минерализацию вод.

К физ. свойствам М. в. относится температура, радиоактивность, обусловленная содержанием радона (Rn). Кислотно-щелочное состояние вод определяется величиной pH.

Для подробной характеристики М. в. служат полные анализы их ионно-солевого состава (содержание катионов, анионов в г/л, мг-экв, экв.% и недиссоциированных молекул в г/л) и газового состава (содержание растворенных и спонтанных, т. е. свободно выделяющихся, газов, а также сумма этих газов в мл на 1 л воды и в об.%). Для краткого выражения состава М. в. применяется условная формула в виде псевдодроби, предложенная в первоначальном виде в 1928 г. М. Г. Курловым. В начале формулы указываются специфические, биологически активные компоненты, в т. ч. газы (в г/л, радон в нкюри/л), далее - минерализация (М) воды, выраженная в г/л. В числителе псевдодроби представлены анионы, в знаменателе - катионы, содержащиеся в количествах не менее 20 экв.% от сумм экв.% каждой из указанных групп анионов и катионов (при этом сумма каждой из этих групп принимается за 100 экв. %). В конце формулы приводится величина pH и температура воды. Напр., формула физ.-хим. состава воды Ессентуки № 17 записывается:

При оценке вод по газовому составу учитываются те газы, к-рые содержатся в количестве не менее 10 об.% от всех газов, растворенных и спонтанных.

Наименование М. в. по газовому и ионному составу дается в определенной последовательности: в порядке нарастания содержания отдельных компонентов, т. е. от меньшего к большему. Так, напр., при содержании азота - 20 и метана - 70 об.%, сульфата -25, хлора - 60, кальция -30 и натрия -65 экв. % вода называется азотно-метановой сульфатно-хлоридной кальциево-натриевой.

Основные критерии и нормы оценки минеральных вод

На основе изучения хим. состава и свойств М. в. и большого опыта их леч. применения в СССР разработаны критерии и нормы опенки М. в, по хим. составу и физ, свойствам; эти данные представлены в таблице 1.

В соответствии с особенностями хим. состава и физических свойств М. в. и характером их воздействия на организм выделяют воды для наружного и внутреннего применения. М. в. для наружного применения часто обладают высокой минерализацией и нередко обогащены специфическими компонентами.

Питьевые М. в. имеют обычно небольшую минерализацию (2 - 12 г/л) и оказывают леч. действие благодаря своему ионному составу и наличию специфических компонентов. При наличии в составе М. в. нек-рых специфических компонентов, напр, органических веществ или железа, лечебными питьевыми считаются воды с минерализацией и менее 2 г/л (Нафтуся. Марциальные Воды и др.). В зависимости от степени минерализации питьевые М. в. разделяют на лечебно-столовые воды с минерализацией 2-8 г/л (исключение - Ессентуки № 4 с минерализацией 8-10 г/л) и лечебные воды с минерализацией 8-12 г/л, редко выше (напр., Лугела -52 г/л).

Запретительные критерии и санитарная оценка минеральных вод

В связи с тем, что питьевые М. в. могут содержать в повышенных концентрациях вещества, оказывающие вредное действие на организм, ГОСТ 13273 - 73 установлены ПДК этих веществ (табл. 2).

Все М. в., используемые в леч. целях, должны соответствовать установленным сан. требованиям как в самих источниках (каптажах), так и в местах потребления вод. Число колоний микроорганизмов в водах для внутреннего и наружного применения не должно превышать 100 на 1 мл воды, коли-титр питьевых М. в. должен составлять не менее 300, вод наружного применения - не менее 100 (ГОСТ 13273-73; ГОСТ 18963-73). Важным показателем хорошего сан. состояния питьевых М. в. является также низкое содержание в них нитратов (NO 3), нитритов (NO 2) и аммония (NH 4)- соответственно 50,0; 2,0 и 2,0 мг/л.

Классификация минеральных вод

Согласно принятой в СССР классификации, предложенной В. В. Ивановым, Г. А. Невраевым (1964), а также «Правилам разработки месторождений минеральных лечебных вод СССР» (1976) М. в. делят на следующие основные бальнео л. группы. А. Воды без специфических компонентов и свойств. Б. Углекислые. В. Сульфидные. Г. Железистые, мышьяксодержащие и «полиметаллические» (с повышенным содержанием нескольких металлов -марганца, меди, свинца, цинка и др.). Д. Бромные, йодные, йодобромные. Е. Радоновые (радиоактивные). Ж. Кремнистые термальные. 3. Слабоминерализованные с высоким содержанием органических веществ - типа Нафтуси и др. В указанных группах М. в. выделяются подгруппы по газовому составу (азотные, метановые, азотно-метановые и др.), классы по анионному составу (гидрокарбонатные, сульфатные, хлоридные, гидрокарбонатно-хлоридные и др.), подклассы по катионному составу- (кальциевые, натриевые, магниево-кальциевые и др.), градации по минерализации.

Основные закономерности распространения минеральных вод

В соответствии с особенностями геологического строения отдельных регионов СССР и условиями формирования в них подземных М. в. выделяют ряд крупных территорий (провинций минеральных вод), в к-рых распространены определенные типы вод.

Провинция термальных вод областей новейшего вулканизма (Камчатка, Курильские о-ва, М. Кавказ). В этой провинции широко распространены разнообразные по составу термальные воды: сильнокислые, сероводородно-углекислые, сульфатные и сульфатно-хлоридные (Кислый Ключ и др.), азотно-углекислые хлоридные «перегретые» (Горячий Пляж, Паужетские и др.), углекислые кремнистые (Джермук, Истису и др.). азотные слабоминерализованные термальные воды (Начикинские, Паратунские и др.).

Провинция углекислых вод областей молодой магматической деятельности (Закарпатье, Кавказ, в т. ч. р-н Кавказских Минеральных Вод, Восточные Саяны, Южное Приморье. Центральная Камчатка и др.). В этой провинции широко распространены разнообразные по ионному составу и минерализации углекислые, иногда термальные воды (в т. ч. Боржоми, Ессентуки, Железноводские, Пятигорские, Дарасунские и др.). Нек-рые углекислые воды обогащены мышьяком, железом, бором. Отдельные месторождения углекислых вод встречаются также вне провинции углекислых вод (Кожановское, Мухенское, Синегорское, Терсинское и др.).

Провинция термальных вод областей молодых тектонических движений - разломов в земной коре (Тянь-Шань, Алтай, Прибайкалье, Дальний Восток). Основной тип М. в.- азотные слабоминерализованные (минерализация до 1 г/л), кремнистые щелочные термальные воды (Кульдур, Талая, Ходжа-Обигарм и др.). На Чукотке и сев. побережье Охотского моря распространены азотные кремнистые высокоминерализованные и рассольные (минерализация до 40 г/л) термальные воды.

Провинция азотных, азотно-метановых и метановых вод артезианских бассейнов занимает большую часть территории СССР. В этой провинции широко распространены М. в. разнообразного ионного состава (сульфатные, сульфатно-хлоридные и хлоридные, магниево-кальциевые, кальциево-натриевые, натриевые и др.) и различной минерализации - от 2-5 до 35-350 г/л (Ижевские, Краинские, Московские, Старорусские и др.). Нек-рые хлоридные и гидрокарбонатно-хлоридные воды являются бромными, йодобромными, иногда йодными (Кудепстинские, Семигорские, Хадыженские и др.). Наибольшее леч. значение среди М. в. этой провинции имеют сульфидные воды, представленные разнообразными по ионному составу, минерализации и содержанию сульфидов (от 10-50 до 500-1000 мг/л) типами вод (Кемери, Краснокамские, Мацестинские, Сергиевские И др.).

Провинция радоновых кислородно-азотных вод массивов кислых кристаллических пород. Радоновые слабоминерализованные холодные воды, в к-рых радон является единственным леч. компонентом, широко распространены в Карелии, на Украине, в Забайкалье и в ряде других р-нов СССР. Вне провинции этих вод известен ряд месторождений радоновых вод (Белокурихинское, Джеты-Огузское, Молоковское, Пятигорское и др.), в к-рых радон сочетается с другими ценными в бальнео л. отношении компонентами и свойствами вод (температура, содержание углекислоты, минерализация).

Эксплуатация и охрана минеральных вод

В СССР в леч. целях используются различные М. в. более 400 месторождений. Их эксплуатация и охрана регламентируются рядом законодательных и нормативных документов: «Основами водного законодательства СССР и союзных республик» (1970); «Положением о курортах» (1973) и инструкцией по применению «Положения о курортах» (1974), содержащей раздел о сан. охране курортов; ГОСТ 13273-73 «Воды минеральные питьевые лечебные и лечебно-столовые» (1973); «Правилами разработки месторождений минеральных лечебных вод СССР» (1976) и др.

Эксплуатационные запасы М. в. утверждаются Государственной комиссией но полезным ископаемым при Совете Министров СССР. В целях горной и сан. охраны месторождений М. в. устанавливаются специальные округа, в пределах к-рых осуществляются необходимые санитарно-оздоровительные мероприятия и поддерживается определенный сан. режим, направленные на сохранение природных леч. факторов (см. Зоны санитарной охраны , Курорты).

Розлив минеральных вод

В СССР разливают в бутылки на специальных заводах и в цехах розлива более 125 природных лечебно-столовых и леч. вод. При розливе воды искусственно насыщают углекислым газом до 0,3% по массе (железистые - до 0,4%), что повышает их вкусовые качества и обеспечивает лучшую сохранность хим. состава, к-рый наряду с порядком, методами и техникой розлива М. в. регламентируется ГОСТ 13273-73.

Искусственные минеральные воды. В леч. учреждениях, не располагающих природными М. в., широко используют искусственные М. в. для наружного применения преимущественно трех типов - углекислые, сульфидные и радоновые (см. Ванны). Искусственные питьевые М. в. в СССР не производятся.

ОСНОВНЫЕ АСПЕКТЫ МЕДИЦИНСКОГО ИСПОЛЬЗОВАНИЯ МИНЕРАЛЬНЫХ ВОД

М. в. широко используются в комплексной терапии при ряде заболеваний для наружного (общие и местные ванны, души, купания и плавание в бассейнах с минеральной водой) и внутреннего применения (питье, промывание желудка, кишечника, микроклизмы и др.), а также для ингаляций.

Действие М. в. на организм определяется их физ.-хим. свойствами: основным ионным составом, а также компонентами, придающими воде специфические свойства (газы, биологически активные компоненты и микрокомпоненты, органические вещества и др.), температурой и pH.

Наружное применение минеральных вод

При наружном применении наряду с хим. составом М. в. существенное значение в бальнеол. действии имеют температура, pH и гидростатическое давление. Ионы солей, находящихся в М. в., вызывают раздражение кожных рецепторов как во время процедуры, так и после нее за счет осаждения на коже тончайшего слоя солей («солевого плаща»), длительно на ней сохраняющегося. Все газы и ионы нек-рых микрокомпонентов (брома, йода, мышьяка и др.) проникают через неповрежденную кожу, попадают в ткани и кровь и непосредственно влияют на функцию органов и систем организма. Т. о. складывается нейрогуморальный механизм действия М. в., специфичность к-рого зависит от преимущественного влияния тех или иных хим. веществ. Подробнее специфический и неспецифический механизм действия М. в. при наружном их использовании, методика применения, а также показания и противопоказания - см. Азотные кремнистые термальные воды , Бальнеотерапия , Ванны , Железистые воды , Йодобромные воды , Мышьяковистые воды , Радоновые воды , Сульфидные воды , Углекислые воды , ХЛОРИДНО-НАТРИЕВЫЕ ВОДЫ .

Внутреннее применение минеральных вод

Наиболее распространенным методом использования М. в. является питьевое лечение. При этом М. в. применяют в комплексе с медикаментозным, диетическим и другими методами лечения.

Питьевое лечение

Основные показания к питьевому лечению : хрон, заболевания жел.-киш. тракта в стадии ремиссии, болезнь оперированного желудка (через 2-3 мес. после операции по поводу язвенной болезни при хорошей эвакуаторной функции и отсутствии кровотечений); хрон, заболевания печени, желчного пузыря, желчных путей и поджелудочной железы, мочевыводящих путей, мочекаменная болезнь (при наличии небольших камней, к-рые не создают препятствий для оттока мочи и могут выделяться через мочевыводящие пути), нек-рые болезни обмена и эндокринные заболевания (сахарный диабет в компенсированной форме, особенно в сочетании с различными заболеваниями жел.-киш. тракта, гипер- и гипотиреоз, ожирение, подагра), атеросклероз в начальных стадиях без выраженных нарушений кровообращения и водносолевого обмена; нек-рые заболевания опорно-двигательного аппарата (остеоартроз, спондилез и др.), хрон, заболевания периферических нервов, сопровождающиеся болями. Более подробные показания к применению М. в. различного состава, обусловленные спецификой механизма действия вод, изложены ниже, при описании этих вод.

Основные противопоказания к питьевому лечению : обострение воспалительного процесса в различных отделах жел.-киш. тракта и других органах; резко выраженное нарушение моторно-эвакуаторной функции желудка и кишечника, требующее оперативного вмешательства; резко выраженный атеросклероз и заболевания сердечно-сосудистой системы, сопровождающиеся отеками, нарушениями функции почек. Не показано питье щелочных вод при щелочной реакции мочи, т. к. это может вызвать нежелательные сдвиги кислотно-щелочного равновесия организма в сторону алкалоза, и при всех заболеваниях мочевыводящих путей, требующих оперативного вмешательства.

Механизм действия питьевых минеральных вод проявляется целым рядом физиол, реакций, в основе к-рых лежат нейрорефлекторные и гуморальные процессы, обусловленные влиянием различных факторов: температурой воды, скоростью поступления ее в желудок и временем пребывания в разных отделах жел.-киш. тракта, химическим составом.

Стимулирующее действие М. в. на желудочную секрецию при попадании в желудок, связанное с раздражением слизистой оболочки желудка, было установлено экспериментальными работами в лаборатории И. П. Павлова и получило название пилорического действия. При переходе в двенадцатиперстную кишку большинство М. в. оказывает более сложное действие: сначала происходит ощелачивание желудочного содержимого, затем кислотность возвращается к исходному уровню, а еще через нек-рое время снижается. Возникает так наз. дуоденальное действие- снижение желудочной секреции, рефлекторно обусловленное раздражением нервных окончаний слизистой оболочки двенадцатиперстной кишки.

Исходя из этого, в методике питьевого лечения М. в. чрезвычайно важно создать такие условия, при к-рых можно было бы получать преимущественно пилорическое пли преимущественно дуоденальное действие. М. в., выпитая незадолго до приема пищи, смешиваясь с ней, не успевает быстро перейти в двенадцатиперстную кишку; дольше задерживаясь в желудке, она раздражает его слизистую оболочку и оказывает преимущественно пилорическое действие. Большинство М. в., принятых задолго до приема пищи, не задерживается в желудке, переходит в двенадцатиперстную кишку и оказывает преимущественно дуоденальное действие. Как пилорическое, так и дуоденальное действие может быть ослаблено или усилено минеральной водой соответствующего состава.

Скорость перехода М. в. из желудка в кишечник зависит и от ее температуры. Холодная вода усиливает двигательную функцию желудка и переходит в кишечник быстрее, теплая уменьшает ее и эвакуируется медленнее. Выпитая М. в., воздействуя на нервные окончания слизистой оболочки как желудка, так и кишечника, оказывает выраженное рефлекторное действие на деятельность других органов пищеварительной системы. Всасывание М. в. и ее поступление в гуморальное русло в основном происходит в верхних отделах кишечника; раздражая нервные окончания кровеносных сосудов, она оказывает т. о. и гуморальное влияние на различные функции организма. Воздействуя на процессы осмоса и диффузии, поверхностного натяжения, электрический заряд клеток, на кислотно-щелочное равновесие организма, обменные процессы, М. в. оказывает влияние на уровень реактивности клеток и тканей. Степень выраженности и характер этих изменений во многом зависят от хим. состава М. в., поэтому выбор ее при питьевом лечении имеет определенное значение.

Специфичность действия М. в. при питьевом лечении зависит от их основного ионного состава (анионного - гидрокарбонат, хлор и сульфат), и катионного (натрий, кальций и магний). Ниже кратко приводятся особенности механизма действия питьевых М. в. в зависимости от преимущественного содержания в них тех или иных ионов пли их сочетания (воды сложного состава).

Гидрокарбонатные воды характеризуются высоким содержанием гидрокарбонатного иона. При наличии в таких водах, кроме того, и катиона натрия они оказывают ощелачивающее действие на содержимое желудка, а также способствуют изменению кислотно-щелочного равновесия в организме в сторону алкалоза (см). Изменение щелочного резерва крови влияет на реабсорбцию жидкости в почечных канальцах.

Присущее всем М. в. свойство вызывать в зависимости от времени их приема по отношению к приему пищи либо пилорическое (стимулирующее секрецию желудочного сока), либо дуоденальное (тормозящее ее) действие особенно четко выражено при соответствующей методике приема гидрокарбонатных вод. Такое двоякое действие гидрокарбонатных вод на секрецию желудочного сока позволяет считать их «универсальными». Гидрокарбонатные воды способствуют разжижению и более легкому удалению патол, слизи со слизистой оболочки желудка, моче выводящих и дыхательных путей, уменьшая при этом явления воспаления. В связи с ощелачиванием жидкостных сред организма повышается растворимость мочевой к-ты, что при усиленном диурезе способствует выведению ее из организма. Вследствие снижения ацидоза улучшается углеводный обмен, что важно при лечении больных сахарным диабетом. Присутствие в гидрокарбонатных водах кальция способствует их противовоспалительному, а магния - спазмолитическому действию, что учитывается при лечении больных с заболеваниями жел.-киш. тракта воспалительного характера со склонностью к спазмам.

За счет нормализации двигательной функции жел.-киш. тракта уменьшаются диспептические явления. К классу гидрокарбонатных вод относятся: Авадхара, Боржоми, Дилижан, Лужанская № 1, Поляна Квасова, Саирме, Уцера и др.

Хлоридные воды . Анион хлора в М. в. чаще находится в сочетании с катионами натрия (хлоридные натриевые воды), реже кальция (хлоридные кальциевые воды). Лечение хлоридными натриевыми водами способствует повышению обменных процессов, оказывает желчегонное действие, улучшает секреторную функцию желудка, поджелудочной железы. Поскольку анион хлора участвует в выработке соляной к-ты париетальными гландулоцитами (обкладочными клетками) желудка, эти воды в основном назначают при заболеваниях жел.-киш. тракта с пониженной секреторной функцией. К основным хлоридным натриевым водам относятся Вярска № 2, Долинская, Минская, Миргородская, Тюменская. Хлоридные кальциевые воды, оказывающие противовоспалительное действие, уменьшают проницаемость клеточных оболочек. К таким водам относится вода Лугела.

Ионы йода и брома, часто входящие в состав хлоридных вод (напр, Нижне-Сергинская, Талицкая, Хадыженекая и др.), позволяют применять их более широко. Так, бром, регулируя функц, состояние нервной системы, способствует устранению спастических явлений в желудке и кишечнике, нормализации (путем рефлекторного воздействия) функций печени и желчного пузыря; йод - нормализации функций щитовидной железы, уменьшению воспалительных явлений в желудочно-кишечном тракте.

Сульфатные воды характеризуются преобладанием ионов сульфатов, к-рые в соединении с катионами натрия или магния, нередко присутствующими в этих водах, образуют соли, плохо всасывающиеся в кишечнике. Эти воды оказывают выраженное раздражающее действие на слизистую оболочку кишечника, сопровождающееся усилением его моторной функции. Сульфатные воды, особенно содержащие катионы магния, усиливают желчеобразование (см.) и желчевыделение (см.), уменьшают вязкость желчи, нормализуют при длительном их применении содержание в желчи билирубина и жирных к-т. Улучшается печеночный кровоток, повышаются обменные, репаративные процессы и барьерная функция печени. Это способствует ликвидации воспалительного процесса в желчных путях, предупреждению камнеобразования, улучшению оттока желчи из желчного пузыря и его протоков. На желудочную секрецию эти воды оказывают преимущественно тормозящее действие. Сульфатные воды несколько снижают всасывание белков и жиров, уменьшают содержание холестерина и фосфолипидов, нормализуют концентрацию свободных жирных к-т, уровень беталипопротеидов и общих липидов в сыворотке крови. В результате лечения водами данного состава отмечено активирование окислительных процессов в организме, нормализация содержания общего азота и мочевины в моче. Сульфатные воды применяют при заболеваниях печени, желчевыводящих путей, сахарном диабете, ожирении. К этим М. в. относятся Баталинская, Лысогорская.

Воды сложного состава . Многие М. в., употребляемые для питьевого лечения, характеризуются сложным хим. составом. Преобладающие в М. в. анионы сочетаются друг с другом, действие их как бы суммируется, благодаря чему расширяются показания к их применению. Это имеет важное значение в леч. практике, т. к. при длительном течении заболевания какого-либо отдела жел.-киш. тракта отмечается в той или иной степени нарушение функции и других органов пищеварительной системы.

В водах сложного состава часто сочетаются ионы хлора и гидрокарбоната (напр., Арзни, Джава, Ессентуки № 4 и № 17, Рычал-Су) либо ионы гидрокарбоната и сульфата (напр., Джермук, Ессентуки № 20, Истису, Славяновская). При назначении вод сложного состава действие того или иного иона проявляется и усиливается в зависимости от методики назначения. Гидрокарбонатно-хлоридные воды назначают при хрон, гастрите как с повышенной, так и с пониженной секрецией.

Сочетание сульфатного иона и иона хлора (хлоридно-сульфатные и сульфатно-хлоридные воды, напр. Алма-Атинская, Вярска № 1, Липецкая, Нижне-Ивкинская № 4, Угличская и др.) обусловливает благоприятное действие М. в. при заболеваниях желудка преимущественно с пониженной секрецией с одновременным поражением печени и желчевыводящих путей, а также при заболеваниях кишечника, протекающих с запорами.

Сочетание гидрокарбонатного и сульфатного ионов [гидрокарбонатно-сульфатные и сульфатно-гидрокарбонатные воды, напр. Ачалуки, Истису (Нижний), кисловодский Нарзан, Славяновская, Смирновская и др.] обусловливает тормозящее действие на желудочную секрецию и вызывает послабление. Эти воды применяют при заболеваниях желудка с повышенной секреторной функцией и сопутствующим поражением печени и кишечника.

Специфичность действия М. в. обусловлена не только их основным ионным составом, но и содержанием биологически активных веществ и компонентов либо в виде ионов, либо в виде недиссоциированных молекул. Так, воды различного ионного состава с содержанием железа (см. Железистые воды) - Бадамлы, Дарасун, Кука, Марциальная, Полюстровская - способствуют повышению содержания гемоглобина в крови, улучшению общего состояния, нормализации функции жел.-киш. тракта. Воды, содержащие йод (Семигорская, Хадыженская, Тюменская и др.), полезны при заболеваниях органов пищеварения с сопутствующим атеросклерозом и нарушением функции щитовидной железы (гипертиреоз). Бромные воды (Лугела, Нижне-Сергинская, Талицкая и др.) способствуют нормализации функц, состояния ц. н. с. (см. Йодобромные воды); мышьяксодержащие воды (Авадхара, Джермук и др.) - улучшению кроветворения (см. Мышьяковистые воды). Борные воды (Бжни, Кармадон, Поляна Квасова, Поляна Купель и др.) при их систематическом применении могут снижать интенсивность окислительных процессов в организме; их не назначают людям, склонным к полноте. Воды, содержащие кремний [Истису (Нижний), Саирме и др.], обладают противовоспалительным действием, а также усиливают антитоксическую функцию печени, что обусловлено адсорбционными свойствами кремниевой к-ты, находящейся в коллоидальном состоянии (см. Азотные кремнистые термальные воды).

Газы, содержащиеся в питьевых М. в., также оказывают специфическое действие на организм. Так, углекислота стимулирует секреторную и моторную функции желудка и кишечника. Сульфидные воды увеличивают содержание сульфгидрильных соединений в тканях печени, что играет важную роль в осуществлении белкового обмена в печени. Эти воды применяют при заболеваниях жел.-киш. тракта, печени и эндокринных заболеваниях, в т. ч. сахарном диабете.

Введение М. в. в двенадцатиперстную кишку методами дуоденального зондирования, дуоденального дренажа или тюбажа и трансдуоденальных промываний способствует уменьшению воспалительного процесса в печени и желчных путях, повышению выделения желчи и ее более энергичному оттоку.

При дуоденальном зондировании 50-100 мл М. в. вводят после взятия всех порций желчи; при дуоденальном дренаже - от 250 до 400- 500 мл М. в. в течение процедуры, интервал 4-5 дней, на курс до 6-8 процедур. При тюбаже М. в., к-рый целесообразно проводить 1 раз в 5-7 дней, больной выпивает 500 мл М. в. в течение 30 - 40 мин. Методика проведения тюбажа М. в. аналогична общепринятой методике тюбажа лекарственными веществами (см. Тюбаж). Оптимальная температура воды при всех указанных процедурах 40-45°. При энтероколитах, протекающих с обострениями, и при заболеваниях печени для всех перечисленных выше процедур введения М. в. в двенадцатиперстную кишку используют преимущественно маломинерализованную воду (до 5 г/л) t° 37-40°; при гипотонии и атонии кишечника температуру воды снижают до 30-25" и применяют воду более высокой минерализации (от 5 до 15 г/л). При трансдуоденальных промываниях объем вводимой М. в, 1-2 л, на курс лечения 4-5 промываний с интервалом 5-6 дней. Методики проведения трансдуоденальных промываний, показания и противопоказания - см. Кишечные промывания .

Микроклизмы из М. в. назначают больным колитами с преимущественным поражением дистального отдела толстой кишки (проктиты, прокто-сигмоидиты и др.). Проводят их после очистительной клизмы ежедневно или через день на ночь, температура воды 38-40°, на курс 5-8 процедур, объем воды для первой клизмы 100-150 мл, для последующих - до 200-250 мл.

При сочетании питьевого лечения с другими перечисленными методами применения М. в. следует исходить из характера заболевания, его течения, стадий и особенностей. Так, для лечения диспептической формы хрон, гастрита с обильной секрецией слизи, при хрон, гастрите с секреторной недостаточностью в стадии компенсации и субкомпенсации, при выраженных воспалительных явлениях, гипокинезии желчных путей питьевое лечение сочетают с промыванием желудка, при наличии болей - с микроклизмами, при дискинезии кишечника с преобладанием гипокинезии - с кишечными промываниями.

В стадии обострения язвенной болезни желудка и двенадцатиперстной кишки применяют только микроклизмы из М. в. и лишь при затухании процесса наряду с микроклизмами назначают питье М. в. В стадии ремиссии (при зарубцевавшейся язве желудка), но с явлениями воспаления слизистой оболочки и диспептических расстройствах, кроме питья М. в., проводят промывание желудка, а при гастрите, сопровождающемся поражением кишечника,- подводные кишечные промывания по щадящей методике. При хрон, заболеваниях кишечника, сопровождающихся дискинезиями с преобладанием гипокинезии, питье М. в. сочетают с кишечными промываниями. Если при дискинезиях преобладают гиперкинетические расстройства, питьевое лечение целесообразно сочетать с микроклизмами.

В дни проведения кишечных промываний питье М. в. отменяют, т. к. при любом способе кишечных промываний организм получает значительную дозу М. в.

М. в. применяют также для ингаляций (см.) в виде аэрозолей при поражениях верхних дыхательных путей: при хрон, субатрофическом и атрофическом рините, риносинусите, хрон, тонзиллите, хрон, атрофических катарах верхних дыхательных путей, озене. Для ингаляции используют преимущественно слабо- и среднеминерализованные гидрокарбонатные натриевые и хлоридно-гидрокарбонатные натриевые воды, содержащие углекислоту, кальциевые гидрокарбонатные сульфатные воды, содержащие сульфиды, а также кальциевые йодистые натриевые воды. Воды указанного состава повышают двигательную активность мерцательного эпителия, разжижают густую и вязкую слизь, способствуют ее более легкому откашливанию, уменьшают сухость, раздражение слизистой оболочки.

Питье М. в. можно сочетать в один день с применением гальванизации, лекарственного электрофореза, импульсного тока, тока и полей ВЧ, УВЧ, СВЧ, общих минеральных ванн, местного грязе-, парафино- или озокеритолечения, ингаляций, климатолечебных процедур.

Таблицы

Таблица 1. Основные нормы оценки ii наименование минеральных вод в зависимости от минерализации, газонасыщенности, содержания специфических компонентов, реакции воды и ее температуры

Показатели

Наименование вод

Минерализация в г/л

Слабоминерализованные

Маломинерализованные

Среднеминерализованные

> 10,0 - 35,0

Высокоминерализованные

> 35,0 -- 150,0

Рассольные

Крепкие рассольные

Газонасыщенность в мл/л

Очень слабогазонасыщенные

Слабогазонасыщенные

Среднегазонасыщенные

Высокогазонасыщенные

углекислый газ (CO 2 растворенный) в г/л

Слабоуглекислые

Среднеуглекислые

Сильноуглекислые

сероводород и гидросульфид (H 2 S + HS) в мг/л

Слабосульфидные

Среднесульфидные

Крепкие сульфидные

Очень крепкие сульфидные

Ультракрепкие сульфидные

Мышьяк (As) в мг/л

Мышьяковистые (мышьяковые)

Крепкие мышьяковистые (мышьяковые)

Очень крепкие мышьяковистые (мышьяковые)

Железо закисное и окисное (Fe 2+ + Fe 3+) в мг/л

Железистые

> 40,0- 100,0

Крепкие железистые

Очень крепкие железистые

Бром (Br) в мг/л

Йод (I) в мг/л

Кремниевая к-та и гидросиликат (H 2 SiO 3 и HSiO 3 -) в мг/л

Кремнистые

Радон (Rn) в нкюри/л

Очень слабо радоновые

Слаборадоновые

Среднерадоновые

Высокорадоновые

Реакция воды, pH

Сильнокислые

Слабокислые

Нейтральные

Слабощелочные

Щелочные

Температура, °C

Холодные

Теплые (слаботермальные)

Горячие (термальные)

Очень горячие (высокотермальные)

Таблица 2. Предельно допустимые концентрации некоторых химических веществ в питьевых минеральных водах

Библиография: Иванов В. В. и Невраев Г. А. Классификация подземных минеральных вод СССР, М., 1964, библиогр.: Исследование механизма влияния бальнеологических факторов на регулирующие системы организма, под ред. Л. К. Шауцуковой и др., Нальчик, 1976; Кипиани Т. И. Минеральные воды и деятельность пищеварительной системы, Л., 1974, библиогр.; Кулаков В. Я. и др. Лечебные минеральные воды, Свердловск, 1970, библиогр.; Курортное лечение заболеваний органов пищеварения и обмена веществ, под ред. Р. Л. Школенко, Пятигорск, 1973; Лечебные минеральные воды, под ред. Е. А. Смирнова-Каменского, Пятигорск, 1971, библиогр.; Минеральные воды СССР, под ред. В. В. Иванова, М., 1974, библиогр.; Саакян А. Г. Курортное лечение колитов и заболеваний прямой кишки, Ставрополь, 1975: Труды 6-го Всесоюзного съезда физиотерапевтов и курортологов, G. 439, М., 1973.

М. И. Антропова; В. В. Иванов (гидрогеология).