Общие принципы построения схем электроснабжения осветительных установок. Реферат: Эксплуатация осветительных электроустановок. Какова единица измерения светового потока

Напряжения и источники питания. Выбор напряжения для осветительной установки определяется общими требованиями, принимаемыми для электроснабжения объекта, а также требованиями электробезопасности.

Для производственных, общественных и жилых зданий, а также для открытых территорий должно применяться напряжение не выше 380/220 В переменного тока с заземленной нейтралью.

В помещениях с повышенной опасностью и особо опасных при использовании для освещения светильников с лампами накаливания следует применять напряжение не выше 42 В.

Светильники рабочего освещения и светильники аварийного освещения в производственных и общественных зданиях и в зонах работы на открытых пространствах должны получать питание от разных независимых источников питания. Допускается питание рабочего и аварийного освещения от разных трансформаторов одной трансформаторной подстанции (ТП) при питании трансформаторов от разных независимых источников. В общественных зданиях при отсутствии независимых источников питание аварийного освещения допускается осуществлять от трансформатора, не используемого для питания рабочего освещения.

Питание наружного освещения объекта должно быть отделено от питания внутреннего освещения.

Электроснабжение освещения выполняют, как правило, самостоятельными линиями от РУ-0,4 кВ ТП. Типовые схемы питания освещения объектов приведены на рис. 3.1.

Рис. 3.1. Типовые схемы питания освещения объектов:

1 – питающие линии;

2 – групповые линии;

3 – магистральный осветительный пункт;

4 – групповой осветительный щиток

Электроэнергия от ТП передается питающими линиями на осветительные магистральные пункты, а от них – групповым осветительным щиткам. Непосредственное питание источников света осуществляется от групповых щитков групповыми линиями.

Схема питания освещения и количество ее звеньев определяются, главным образом, мощностью, требуемой для освещения, и размерами объекта. В простейшем случае групповые щитки (или щиток) могут питаться линиями, отходящими непосредственно от РУ-0,4 кВ ТП.

Вопросы резервирования питания осветительных установок решаются в комплексе проекта электроснабжения объекта. Двухтрансформаторные ТП с устройством АВР обеспечивают возможность продолжения работы освещения при аварийном отключении одного из трансформаторов.

Питающие и групповые линии выполняются по радиальным, магистральным и смешанным схемам (рис. 3.1). Выбор схемы питания определяется:



Требованиями к бесперебойности питания осветительных установок;

Технико-экономическими показателями (приведенными затратами, расходом цветного металла и электроэнергии);

Удобством управления и простотой эксплуатации осветительной установки.

Технико-экономическими расчетами установлено, что наибольшая длина трехфазных четырехпроводных групповых линий при напряжении 380/220 В составляет не более 100 м, а двухпроводных – не более 40 м. Каждая групповая линия, как правило, должна содержать на фазу не более 20 ламп накаливания, ДРЛ, ДРИ, ДНаТ, а при использовании многоламповых люминесцентных светильников – до 50 ламп.

Групповые линии сетей освещения должны быть защищены плавкими предохранителями или автоматическими выключателями на рабочий ток не более 25 А. Групповые линии, питающие газоразрядные лампы мощностью 125 Вт и более, лампы накаливания мощностью 500 Вт и более допускается защищать плавкими предохранителями или автоматическими выключателями на рабочий ток до 63 А.

Автоматические выключатели в осветительных сетях получили более широкое распространение. Они удобно компонуются в щитке, безопасны в обслуживании, совмещают функции защиты и управления, действуют многократно.

В осветительных сетях, в отличие от силовых сетей, к трехфазной цепи присоединяются однофазные электроприемники. На рис. 3.2 показаны три варианта распределения ламп освещения между фазами в трехфазной цепи.

Верхний вариант оптимален с точки зрения потерь напряжения в линии, так как центры тяжести нагрузок разных фаз совпадают, но этот вариант не является лучшим в отношении ослабления пульсаций освещенности и, кроме того, при случайном отключении одной-двух фаз создается случайное распределение освещенности вдоль линии.

Рис. 3.2. Распределение ламп по фазам

Средний вариант применяется наиболее часто. Он лучше, чем остальные, обеспечивает снижение пульсаций освещенности и при отключении одной-двух фаз дает относительно равномерное распределение освещенности вдоль линии.



Нижний вариант применяется в тех случаях, когда освещение помещения должно включаться по участкам.

Групповые осветительные щитки (ЩО), расположенные на стыке питающих и групповых линий, предназначены для установки аппаратов защиты и управления групповыми электрическими сетями.

При выборе ЩО учитывают условия среды в помещениях, способ установки, типы и количество установленных в них аппаратов.

По роду защиты от внешних воздействий ЩО имеют следующие конструктивные исполнения:

Защищенное;

Закрытое;

Брызгонепроницаемое;

Пыленепроницаемое;

Взрывозащищенное;

Химически стойкое.

Конструкции ЩО допускают открытую установку на стенах (колоннах, конструкциях и пр.) и утопленную в нишах стен.

Размещение ЩО следует производить вблизи от центра электрических нагрузок, при этом необходимо обеспечить доступность обслуживания ОЩ. При размещении ЩО следует выбирать помещения с более благоприятными условиями окружающей среды. Не следует размещать ЩО в горячих и сырых цехах предприятия, а также в пожароопасных помещениях. Запрещается устанавливать ЩО во взрывоопасных помещениях.

Трассировка групповых линий подчиняется ряду нормативных требований и практических рекомендаций:

Линии должны прокладываться по возможно более коротким трассам, при открытой проводке параллельно стенам помещений, при скрытой проводке по кратчайшему направлению;

Желательно совмещать трассы линий, идущих в одном направлении, даже если это несколько удлиняет протяженность линий;

При возможности следует прокладывать линии по стенам, а не по потолкам;

Линии, открыто проложенные по потолку, следует прокладывать перпендикулярно к стороне с окнами;

Следует ограничивать число проходов сквозь стены и число ответвительных коробок;

В помещениях с фермами целесообразно прокладывать линии поперек ферм в виде перекидок между фермами;

В пожароопасных помещениях запрещается транзитная прокладка линий, не относящихся к электроприемникам этого помещения.

Выполнение осветительных сетей. Электрические осветительные сети выполняются изолированными проводами, кабелями, шинопроводами. Провода и кабели применяются с медными и алюминиевыми жилами, шинопроводы с алюминиевыми шинами.

Питающие линии вне помещений выполняются преимущественно кабелями в земляных траншеях или кабельных сооружениях. Реже применяются воздушные линии с голыми или изолированными (СИП) проводами.

Осветительные сети внутри помещений выполняются открытыми и скрытыми электропроводками. В жилых и общественных зданиях предпочтительнее скрытые электропроводки ввиду их эстетичности.

Наиболее распространенные способы открытой электропроводки:

Непосредственная прокладка проводов и кабелей по стенам и потолкам с помощью специальной крепежной арматуры;

- прокладка в лотках из перфорированной стали;

- прокладка в трубах при необходимости защиты проводов и кабелей от механических повреждений;

- тросовые проводки, в которых провод (кабель) крепится к предварительно натянутому тросу (проволоке);

- проводка осветительным шинопроводом (ШОС).

Шинопроводы применяются в производственных помещениях, общественных и административных зданиях. Шинопроводы ШОС2 и ШОС3 имеют однофазное исполнение, шинопроводы ШОС4 и ШОС5 – трехфазное.

Шинопроводы ШОС2 и ШОС4 двух- и четырехпроводные применяются для электрических сетей с глухозаземленной нейтралью. Нулевой проводник замкнут на металический корпус шинопровода и образует совмещенный (PEN ) проводник.

Шинопроводы ШОС3 и ШОС5 выполняются трех- и пятипроводными. Здесь нулевой рабочий и нулевой защитный проводники разделены (N и PEN ). Рабочий нулевой проводник (N ) находится в корпусе шинопровода, роль защитного проводника (РЕN ) выполняет металлический корпус.

Шинопровод ШОС обеспечивает возможность штепсельного присоединения (без снятия напряжения с линии) однофазных приемников электрической энергии на номинальный ток до 10 А.

Шинопровод состоит из типовых элементов: секций (прямых, вводных, гибких); торцовых заглушек; штепселей и конструкций для крепления.

Соединение секций разъемно-разборное. Один конец секции снабжен штепсельной розеткой с затягивающими винтами, а на другом конце выступающие шины образуют штепсельную вилку. После того, как штепсель одной секции вставлен в розетку другой секции, штепсельный контакт затягивается винтами.

Осветительные сети промышленных предприятий подразделяются на две группы: питающие и групповые. Питающие сети прокладываются от щита низкого напряжения трансформаторной подстанции до групповых щитков, а групповые сети - от групповых щитков до светильников и штепсельных розеток. Питание осветительных установок происходит от общих трансформаторов. Согласно ПУЭ светильники аварийного освещения присоединяют к независимым источникам питания, таким как секции сборных шин подстанции, питающиеся от разных трансформаторов, аккумуляторные батареи и дизель-генераторы. Иногда предусматривается использование сетей рабочего освещения для питания светильников аварийного освещения.

В этом случае при отключении рабочего освещения обеспечивают автоматическое переключение аварийного освещения на независимый источник электроснабжения.

Конфигурация схем питания зависит от требований к осветительным установкам, уровня надежности общей схемы электроснабжения предприятия, количества групповых щитков освещения, протяженности сетей освещения и т. д.

В трехфазной системе переменного тока применяют несколько схем групповой сети: двухпроводная однофазная, двухпроводная двухфазная, трехпроводная двухфазная с нулевым проводом, трехпроводная трехфазная, четырехпроводная трехфазная с нулевым проводом. В сетях с изолированной нейтралью применяют двухпроводные однофазные, трехпроводные трехфазные и двухпроводные двухфазные схемы.

Питание силовых и осветительных нагрузок на предприятии от шин низкого напряжения подстанций с одним или двумя трансформаторами обычно выполняют раздельными линиями.

Наименее надежной является схема освещения при питании от подстанции с одним трансформатором, так как при отключении его полностью прекращается подача напряжения в сеть освещения. Более надежной схема электроснабжения осветительных установок будет в том случае, когда рабочее и аварийное освещение получают питание от разных трансформаторов подстанции с двумя трансформаторами. При выходе из строя одного из трансформаторов в производственных помещениях остаются в работе светильники, подключенные на электроснабжение от другого трансформатора.

Рис. 52. Схема осветительной сети при системе блока трансформатор - магистраль:
1 - магистраль; 2 - разъединитель; 3 - силовая нагрузка; 4 - рабочее освещение; 5 - аварийное освещение; 6 - вторичные магистрали.

На крупных предприятиях применяется питание сетей освещения по схеме блока трансформатор - магистраль (рис. 52). При аварийном отключении одного из трансформаторов его нагрузки переключают на трансформатор, оставшийся в работе. Аварийное освещение подключается к соседней ТП.

Наивысшую надежность электроснабжения осветительных электроустановок получают при питании трансформаторов обеих ТП от разных генераторов электростанций или от разных питающих подстанций энергосистемы.

В двухпроводных сетях освещения взрывоопасных помещений аппараты управления и защиты устанавливаются в фазном и нулевом проводах, при этом для заземления прокладывается дополнительный провод (в двухпроводной цепи, где нулевой провод используется для заземления, а также в трех- и четырехпроводных линиях запрещается устанавливать предохранители в нулевых проводах).

Аппараты управления освещением в небольших помещениях размещают в самом помещении близко от входа, со стороны дверной ручки, а в сырых, пожаро- и взрывоопасных помещениях и вне помещений.

Для включения освещения производственных корпусов и наружного освещения применяются автоматы, магнитные пускатели и контакторы общего назначения. Включение и выключение может быть ручным или автоматическим. При автоматическом включении сетей освещения используют фотореле, которые подают сигнал к включению в зависимости от снижения уровня освещенности естественного освещения и сигнал к отключению при нарастании освещенности до определенного уровня (рис. 53).


Рис. 53. Схема фотореле типа ФР-1

Фоторезистор R типа ФСК-1Г устанавливается вне помещений. Последовательно в цепь фоторезистора включена обмотка поляризованного реле РП. Днем сопротивление фоторезистора мало, поэтому по обмотке поляризованного реле РП, включенного последовательно с ним, протекает большой ток, и контакты его разомкнуты (тем самым магнитный пускатель управления освещением отключен). При уменьшении внешней освещенности ниже установленного уровня (5 лк) увеличивается сопротивление фоторезистора, ток через обмотку реле РП снижается и оно отключается, размыкая контакты. Это вызывает включение магнитного пускателя через дополнительное реле РПНВ. При увеличении освещенности до 10 лк реле РП повторно срабатывает, и освещение отключается.

Грамотное проектирование водоснабжения и канализации является главным условием длительной и бесперебойной службы инженерных систем. На стадии разработки проекта рассчитываются все ключевые параметры водонапорного и канализационного оборудования, определяются оптимальные диаметры труб, углы их уклона, оценивается требуемая производительность системы и др. Все эти расчеты являются достаточно сложными, и для их успешного выполнения нужен опыт, специальные знания и глубокая теоретическая подготовка. Поэтому проектирование наружных сетей водопровода и канализации необходимо поручать профессиональным инженерам.

Перечень работ

При проектировании водопровода и канализации выполняются следующие процедуры:

  • Проводится анализ технического паспорта здания, который предоставляется клиентом.
  • Рассчитывается необходимое количество…

Индивидуальные тепловые пункты

Установка индивидуального теплового пункта (ИТП) позволит стабильно обеспечивать жилые и промышленные здания теплом, поддерживая в помещениях комфортные условия микроклимата. Индивидуальный тепловой пункт необходим для того, чтобы контролировать расходы на энергоноситель и подавать тепло только тогда, когда это необходимо. Если здание временно не эксплуатируется и нет необходимости в его отоплении, через ИТП можно отключить отопление помещений (или установить систему в режим минимальной производительности), и тем самым сэкономить существенную сумму денег.

Но чтобы индивидуальный тепловой пункт работал без сбоев, нужно ответственно отнестись к проектированию ИТП. Данная задача является предельно сложной и трудоемкой, т.к. инженерам нужно выполнить множество действий:

    Определение рабочих характеристик отопительного оборудования,…

Системы безопасности

Предпринимательская деятельность всегда связана с определенными рисками. Всегда есть некоторая вероятность того, что на территорию завода, цеха, мастерской, офисного здания, супермаркета или другого объекта проникнут злоумышленники и попытаются украсть ценное имущество. Не стоит забывать и о вероятности возникновения пожара: из-за некачественного монтажа электропроводки, ее повреждения или перегрузки может произойти возгорание, которое повлечет за собой материальные потери и причинит ущерб здоровью людей.

Чтобы избежать подобных неприятностей, нужно своевременно выполнять проектирование систем безопасности и внедрять готовые решения. Но создание проектной документации является предельно сложной и трудоемкой процедурой, и справиться с этой задачей могут только профессиональные инженеры. Они тщательно проанализируют обстановку на территории предприятия, подберут…

Системы холодоснабжения

Холодильное оборудование широко используется в торговом бизнесе, пищевой и фармакологической промышленности. Оно предназначено для создания оптимального температурного режима, при котором продукция может дольше храниться, не теряя свои изначальные свойства. К примеру, холодильная камера применяется в магазинах и супермаркетах для размещения, выкладки и демонстрации полуфабрикатов, мясных и рыбных продуктов, овощей и фруктов. Холодильные камеры, как правило, оснащаются стеклянными прозрачными дверцами, поэтому посетители торговых заведений могут видеть весь ассортимент выложенных товаров, не открывая саму камеру.

Холодильные установки также применяются в таких целях:

    Для обеспечения бесперебойной работы промышленных агрегатов и станков. Производственное оборудование, которое используется в цехах, заводах, мастерских, фабриках…

Комплексная автоматизация

Автоматизация инженерных систем зданий - это востребованная услуга, которой пользуются многие владельцы промышленных объектов и коммерческих заведений. Необходимость в ее внедрении обусловлена многими факторами. Дело в том, что в процессе эксплуатации здания возникают значительные расходы на поддержание комфортных условий микроклимата, обеспечение работоспособности инженерных сетей (водо-, электро- и холодоснабжения, вентиляции, отопления, пожаротушения и др.) Чтобы сократить финансовые расходы на поддержание этих систем в рабочем состоянии и оперативно восстановить их работоспособность при критических сбоях, требуется профессиональная автоматизация инженерных систем зданий и сооружений. Что это дает?

    Автоматизация технологических систем позволяет эффективно и рационально расходовать энергоресурсы.

  • Вентиляция кондиционирование

    При строительстве производственных зданий (цехов, мастерских, фабрик и пр.), складских комплексов и коммерческих заведений уделяется особое внимание проектированию систем промышленной вентиляции. Эти инженерные сети требуются для реализации таких целей:

      проветривание помещений;

      поддержание оптимальной влажности воздуха;

      удаление отработанных воздушных масс;

      подача свежего атмосферного воздуха;

      очищение приточного воздуха от пыли и летучих частиц.

    Чтобы оборудование для вентиляции работало стабильно и бесперебойно, необходимо ответственно отнестись к разработке проекта. На стадии проектирования вентиляционных систем осуществляется подбор техники,…

    Электроснабжение освещение

    Электроэнергия используется на всех без исключения промышленных объектах. Она необходима для исправной работы производственного оборудования (станков, электронной аппаратуры, компьютерной техники) и различных инженерных систем - освещения, вентиляции, кондиционирования и др. Чтобы в процессе эксплуатации электротехники на предприятии не возникло проблем, необходимо выполнить проектирование систем электроснабжения на профессиональном уровне.

    Разработку проекта электроснабжения вы можете поручить инженерам компании Омега. Специалисты приедут на объект вскоре после вызова, выполнят полный комплекс замеров и расчетов, и на основе собранной информации разработают полноценный проект системы электроснабжения. Готовую проектную документацию в дальнейшем можно сразу передавать инженерам-монтажникам, ее не придется править и вносить какие-либо коррективы.

    Отопительные комплексы

    Чтобы отопительное оборудование в частном доме, коттедже или промышленном объекте корректно выполняло свои задачи и работало без сбоев, нужно не только правильно выполнить монтаж отопления, но и уделить максимум внимания разработке проектной документации. В проекте отопления указываются все рабочие параметры системы, местоположение котельных агрегатов, их мощность и тип, размеры труб, характеристики дополнительных устройств (термостатов, радиаторов, циркуляционных насосов) и другая важная информация.

    Поскольку проектирование и монтаж систем отопления требуют соответствующих знаний и опыта, такие работы нельзя доверять частным мастерам, у которых нет лицензий и допусков на проведение проектно-монтажных процедур. Низкоквалифицированный инженер может допустить ошибки при проектировании отопления, и из-за неправильных расчетов в будущем могут возникнуть проблемы…

Питание электрического освещения осуществляется, как правило, совместно с силовыми электроприемниками от общих трехфазных силовых трансформаторов с глухозаземленной нейтралью с вторичным напряжением 400/230 В. Номинальное напряжение в таких сетях составляет 380/220 В.

Сети электрического освещения подразделяются на питающие, распределительные и групповые.

Питающая осветительная сеть – сеть от распределительного устройства подстанции или ответвления от воздушных линий электропередачи до вводного устройства (ВУ), вводно-распределительного устройства (ВРУ), главного распределительного щита (ГРЩ).

Распределительная сеть – сеть от ВУ, ВРУ, ГРЩ до распределетельных пунктов, щитков и пунктов питания освещения.

Групповая сеть – сеть от щитков до светильников, штепсельных розеток и других электроприемников.

Вводное устройство (ВУ) – совокупность конструкций, аппаратов и приборов, установленных на вводе питающей линии в здание или его обособленную часть.

Вводно-распределительное устройство (ВРУ) – вводное устройство, включающее в себя также аппараты и приборы отходящих линий.

Вводно-распределительное устройство (ВРУ) – вводное устройство, включающее в себя также аппараты и приборы отходящих линий. Вводно-распределительное устройство (ВРУ) – относится к виду электротехнических устройств низкого напряжения и используется в сетях с номинальным напряжением до 380 В переменного тока с частотой 50 Гц. ВРУ (вводно-распределительное устройство) защищает линии от перегрузок сети и коротких замыканий, получает и распределяет электроэнергию.

ВРУ классифицируется по следующим основным признакам:

по конструктивному исполнению (однопанельное ВРУ, многопанельное ВРУ, шкафное ВРУ);

по месту установки (в электрощитовых помещениях, вне этих помещений (например, уличное исполнение));

по виду установки (напольное ВРУ, настенное ВРУ, встраиваемое в нишу ВРУ);

по степени защиты;

по вводным схемам (один ввод, два ввода, два ввода с секционированием и т.п.);

по наличию АВР (блока автоматического ввода резерва);

по доступу обслуживающего персонала (квалифицированного, неквалифицированного).

Вводно-распределительное устройство (ВРУ) чаще всего находятся в системе электроснабжения здания (сооружения) на среднем уровне распределения питания напряжением 0,4кВ после ГРЩ. Но могут находится и на верхнем уровне как главный распределительный щит здания.

Главный распределительный щит (ГРЩ) – распределительный щит, через который снабжается электроэнергией все здание или его обособленная часть.

Групповой щиток – устройство, в котором установлены аппараты защиты и коммутационные аппараты (или только аппараты защиты) для отдельных групп светильников, штепсельных розеток и стационарных электроприемников.


В отношении обеспечения надежности электроснабжения электроприемники разделяются на следующие 3 категории:

I - электроприемники, перерыв в электроснабжении которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса;

II - электроприемники, перерыв в электроснабжении которых может привести к массовому недовыпуску продукции, массовым простоям рабочих, механизмов, транспорта и т.д.

III - электроприемники, не попадающие под определения первой и второй категорий.

Некоторые типовые схемы питания осветительных электроэнергии установок производственных зданий приведены на рис. 3.2 - 3.7.

На рис. 3.2 приведены схемы питания электрического освещения от вводно-распределительного устройства (ВРУ) совместно с силовыми электроприемниками.

Рис. 3.2. Схема питания электрического освещения от ВРУ

На рис. 3.3 приведены схемы питания рабочего и эвакуационного освещения от одной однотрасформаторной подстанции. Осветительные щитки питаются по отдельным линиям от щита подстанции (рис. 3.3, а ) или по общей линии с разделением ее на вводе в здание (рис. 3.3, б ).

Рис. 3.3. Схема питания освещения от однотрансформаторной

подстанции

В линейных шкафах комплектных трансформаторных подстанций как правило установлены аппараты защиты на большие значения номинальных токов, поэтому в этом случае питание осветителых установок осуществляется через магистральные щитки (рис. 3. 4).

Рис. 3.4. Схема питания групповых щитков от магистрального щитка

Рис. 3.5. Схема питания электрического освещения от двух однотрансформаторных подстанций

При перекрестной схеме питания (рис. 3.5) рабочее освещение помещения питается от одного трансформатора, аварийное освещение в этом же помещении питается от другого трансформатора. В целях сохранения полного освещения при аварийных и плановых отключениях трансформаторов в ряде случаев желательно иметь перемычки между однотрансформаторными подстанциями, обеспечивающими сохранение напряжения на распределительном щите.

Рис. 3.6. Схема питания электрического освещения от двухтрансформаторной подстанции

При наличии в системе электроснабжения здания двухтрансформаторных подстанций щитки рабочего и аварийного освещения подключаются от разных трансформаторов (рис. 3.6). Шины щита низшего напряжения двухтрансформаторных подстанций, как правило, разделяются на 2 секции, по числу трансформаторов. Между секциями устанавливается секционный выключатель (АВР автомат ввода резерва), позволяющий объединить обе секции в одну при аварийном отключении одного из трансформаторов.

Для электроустановок первой категории надежности, в качестве второго источника питания аварийного освещения могут применяться аккумуляторные батареи, генераторы с дизельными или бензиновыми двигателями, а также используются электрические связи с ближайшими независимыми источниками (рис. 3.7).

Рис. 3.7. Схема питания электрического освещения от трех источников

Эта схема используется при питании осветительных установок от трех источников.

1.0Общие сведения об электроустановках………………………………2

1.1 Виды освещения………………………………………………………...3

1.2 Светильники и прожекторы……………………………….. ………...4

2.0 Схемы включения электрических источников света……………..8

2.1 Схемы включения ламп накаливания………………………………8

2.2 Схемы включения люминесцентных ламп………………………...11

2.3 Схемы включения ламп ДРЛ……………………………...................13

3.0 Эксплуатация осветительных установок…………………………..15

3.1 Замена ламп и чистка светильников………………………………..16

3.2 Приспособления для обслуживания светильников………………..18

4.0Планово-предупредительный осмотр, проверка и ремонт светильников……………………………………………………………….21

5.0Техника безопасности при работе в электроустановках напряжением до 1000 вольт………………………………………………24

5.1 Общие сведения………………………………………………………...25

5.2 Правила работы с электрофицированым инструментом………...27

5.3 Работа в электроустановках напряжением до 1000 вольт..............28

6.0 Список литературы…………………………………………………....29

1.0 Общие сведения об электроустановках.

Конструкция, исполнение и нормальная работа электроустановок, в которых производиться, преобразуется, распределяется и потребляется электроэнергия, зависят от окружающей среды. Различные требования предъявляют к электроустановкам наружным (открытым) и внутренним (закрытым). Помещения, в которых выполняется монтаж электроустановка в зависимости от состояния среды (температуры, влажности, запылённости, загазованности) разделяют на сухие, влажные, сырые, особо сырые, пыльные, с химически активной средой, жаркие, пожара и взрывоопасные. Кроме того различают помещения с повышенной опасностью, особо опасные и без повышенной опасности.

1.1 Виды освещения.

Установки электроосвещения различных видов выполняют во всех производственных и бытовых помещениях, в общественных, жилых и других зданиях, на улицах, площадях, дорогах, проездах. Кроме установок общего применения имеются специальные, например, для облучения растений в сельском хозяйстве, лечебных целей в медицинских учреждениях, регулирования и управления движением на транспорте и технологическими процессами на производстве и т.д.

Специальные устройства электроосвещения называют осветительными установками. В состав осветительной электроустановки входят источники света, осветительные арматуры, пускорегулирующие устройства, электропроводки, электроустановочные изделия и приборы, щиты, щитки и распределительные устройства. В соответствии с правилами устройства электроустановок (ПУЭ) различают освещение общее, местное, аварийное и охранное.

Общим - называют освещение всего или части помещения;

местным – освещение рабочих мест, предметов, поверхностей;

комбинированным – сочетание общего освещения с местным, создающим повышенную освещённость непосредственно на рабочих местах.

Общее освещение может быть равномерным и локализованным, когда светильники размещают так, чтобы на основных рабочих местах создавалось повышенная освещённость.

Основным видом освещения для обеспечения нормальной деятельности во всех помещениях и на открытых участках, где в тёмное время суток производятся работы или происходит движение транспорта и людей, является рабочее.

При его нарушении используется аварийное освещение, обеспечивающее временно продолжение работы или эвакуацию людей. Охранное освещение является составной частью рабочего и устанавливается вдоль границ охраняемой территории. К рабочему освещению относят ремонтное (переносное) и свето-ограждающее для дымовых труб и других особо высоких сооружений.

1.2 Светильники и прожекторы

Световой поток большинства источников света распределяется, а в пространстве достаточно равномерно.

Для рационального освещения помещения или открытого пространства требуется обычно распределить световой поток источника света вполне определённым образом: направить его вниз, или вверх. Для такого перераспределения светового потока применяют осветительные приборы.

Светильники являются осветительными приборами ближнего действия, служащими для освещения объектов, находящихся на небольшом расстоянии.

Прожектор в отличие от светильников является осветительным прибором дальнего действия и используется для освещения удалённых объектов.

Светильник состоит из источника света и осветительной арматуры. Главным назначением осветительной арматуры является перераспределение светового потока источника света. Ещё она предохраняет зрение рабочих то чрезмерной яркости источников света, защищает лампу от механических повреждений, защищает полости расположения источника света и патрона то воздействия окружающей среды, служит для крепления источника света, проводов, пускорегулирующих аппаратов.

Оптические системы осветительных приборов предназначены для перераспределения световых потоков источников света. Элементами оптических систем являются: отражатели, преломлятели, рассеиватели, защитные стёкла, экранирующие решётки и кольца.

Отражатели – перераспределяют световой поток лампы. В зависимости от отражения отражатели могут быть диффузными, матовыми или зеркальными.

Рассеиватели – перераспределяют световой поток лампы на основе рассеянного пропускания. Различают диффузные, матовые и матированные рассеиватели. Два последних обладают направленно-рассеянным пропусканием; у матированных рассеивающая способность меньше, чем у матовых.

Преломлятель – перераспределяет световой поток источника света, отразившийся от отражателя, перераспределяется с помощью рассеивателя или преломлятеля. Отдельные типы светильников могут не иметь отражателя или рассеивателя.

Современными электрическими источниками света являются лампы накаливания, люминесцентные низкого давления и ртутные высокого давления.

Лампы накаливания (рис.1) наиболее распространённые в качестве электрического источника света, имеют вольфрамовую нить, чаще всего спиральную, находящуюся в вакууме или инертным газе.

Рис 1. Лампа накаливания.

Принцип действия ламп накаливания основан на преобразовании электрической энергии, подводимой к её нити, в энергию видимых излучений, воздействующих на органы зрения человека и создающих у него ощущение света, близкого к белому.

Лампы накаливания, из внутреннего объёма (колбы) которых выкачан воздух, называют вакуумными, а заполненные инертными газами - газополными.

Газополные лампы при прочих равных условиях имеют большую, чем вакуумные лампы, световую отдачу, поскольку находящийся в колбе под давлением газ препятствует испарению вольфрамовой нити, что позволяет повысить её рабочую температуру, а следовательно, и световую отдачу.

Недостатком их является некоторая дополнительная потеря тепла нити накала через конвекцию газа, заполняющего внутреннюю полость колбы. А основным недостатком ламп накаливания является низкая световая отдача: только 2-4% потребляемой или электрической энергии превращается в энергию видимых излучений, воспринимаемых глазом человека, остальная часть энергии преобразуется в тепло, излучаемое лампой.

Для освещения предприятий, учреждений и учебных заведений в настоящее время применяют преимущественно люминесцентные лампы низкого давления (рис.2) представляющие собой стеклянную герметически закрытую трубку, внутренняя поверхность которой покрыта тонким слоем люминофора.

Рис.2 Люминесцентная лампа низкого давления.


Люминесцентные лампы низкого давления изготовляют на напряжение 127В мощностью 15 и 20Вт, на напряжение 220В – мощностью 30, 40, 65 и 80Вт. Срок службы ламп при нормальном режиме работы 10 000 часов. Светоотдача люминесцентных ламп примерно в 4-5 раз выше, чем у ламп накаливания.

Одной из разновидностей люминесцентных ламп являются дуговые ртутные лампы (ДРЛ) высокого давления, (рис.3) которые служат для освещения городских улиц, площадей, а так же территории и производственных помещений предприятий и выпускаются двухэлектродные и четырёхэлектродные.

Рис.3 Дуговая ртутная лампа высокого давления (ДРЛ).

Двухэлектродные лампы ДРЛ выпускают мощностью 80, 125,250,400,700 и 1000 Вт.

2.0 Схемы включения электрических источников света.

Существует множество схем включения электрических источников света. Наиболее простым являются схемы включения ламп накаливания, а более сложными – люминесцентных ламп и дуговых ртутных ламп (ДРЛ) высокого давления.

2.1 Схемы включения ламп накаливания.

Присоединение с сети двух ламп накаливания, управляемых одним однополюсным выключателем показано на рис.4а. Число ламп может быть больше двух.

Управление пятью лампами осуществляется двумя, расположенными радом однополюсными выключателями (рис4б).


При первом повороте переключателя выключается одна лампа из трех, при втором – остальные две, но выключается первая лампа, третьим поворотом переключателя включаются все лампы, а четвертым – все лампы люстры выключаются.

При необходимости независимого управления одной или несколькими лампами с двух мест применяют схему (рис4г) где используют 2 переключателя, соединенных двумя перемычками.


Перемычки и провод, идущий от переключателя к лампам, создают необходимые цепи независимого управления лампами с двух мест. Эту схему используют при освещении коридоров и лестничных клеток жилых домов и предприятий, а так же туннелей с двумя или несколькими входами.

Лампы осветительных электроустановок, питаемых от трехпроводной системы трехфазного тока, включают на междуфазное напряжение сети (рис 4д),

а питаемых от четырехпроводной сети – между фазным и нулевым проводами (рис.4е.)

2.2 Схемы включения люминесцентных ламп.

Люминесцентные лампы могут включаться в электрическую сеть по стартерной или бесстартерной схемам зажигания.

При включении ламп со стартерной схемой зажигания (рис. 5) в качестве стартера применяют газоразрядную неоновую лампу с двумя (подвижными и неподвижными) электродами.


Включают люминесцентную лампу в электрическую сеть только последовательно с балластным резистором, ограничивающим рост тока в лампе, и таким образом предохраняющим её от разрушения. В сетях переменного тока в качестве балластного резистора применяют конденсатор или катушку с большим индуктивным сопротивлением – дроссель.

Зажигание люминесцентной лампы происходит следующим образом. При включении лампы между электродами возникает тлеющий разряд, тепло которого нагревает подвижный биметаллический электрод. При нагреве до определенной температуры подвижный электрод стартера, изгибаясь, замыкается с неподвижным, образуя электрическую цепь, по которой протекает ток, необходимый для предварительного подогрева электродов лампы. Подогреваясь, электроды начинают испускать электроны. Во время протекания тока в цепи электродов лампы разряд в стартере прекращается, в результате подвижный электрод стартера остывает и, разгибаясь, возвращается в исходное положение, разрывая электрическую цепь лампы. При разрыве к напряжению сети добавляется ЭДС. Самоиндукции дросселя и возникший в дросселе импульс повышенного напряжения вызывает дуговой разряд в лампе и её зажигание. С возникновением дугового разряда напряжение на электродах лампы и параллельно соединенных с ними электродах стартера снижается на столько, что оказывается недостаточным для возникновения тлеющего разряда между электродами стартера. Если зажигание лампы не произойдет, то на электродах стартера появиться полное напряжение сети и весь процесс повториться.

2.3 Схемы включения ламп ДРЛ.

Лампы ДРЛ включают в электрическую сеть переменного тока напряжением 220В . Через поджигающее устройство, при помощи которого осуществляется зажигание лампы импульсом высокого напряжения (рис. 6)

Поджигающее устройство состоит из разрядника Р , селенового выпрямителя (диода) СВ , зарядного резистора R и конденсаторов С1 и С2 . Основная обмотка дросселя в схеме служит для предотвращения резкого возрастания тока в лампе, а так же стабилизации её режима горения.

Зажигание ламп происходит так. При включении лампы ток, проходя через выпрямитель СВ и зарядный резистор R , заряжает конденсатор С2 . Когда напряжение на конденсаторе С2 достигнет примерно 220В , происходит пробой воздушного промежутка разрядника Р и конденсатор С2 разряжается на дополнительную обмотку дросселя, в результате чего в основной обмотке дросселя создается повышенное напряжение, импульсом которого и зажигается лампа Л . Для защиты выпрямителя от импульса высокого напряжения служит конденсатор С1 , Конденсатор С3 необходим для устранению помех радиоприемнику, создаваемых поджигающим устройством при зажигании лампы.

3.0 Эксплуатация осветительных установок.

Ни одна осветительная установка, как это следует из многочисленных обследований, не может оставаться эффективной, если за ней не будет обеспечен регулярный и хороший уход. Старение ламп и связанное с этим снижение их светового потока, накопление пыли и грязи на отражающих и рассеивающих поверхностях светильников и лампах, а также постепенное ухудшение отражающих свойств поверхностей помещений и оборудования – все это способствует потере светового потока и постепенному уменьшению уровня освещенности.

Старение источников света является неизбежным, степень же загрязнения светильников и поверхностей помещений и оборудования может контролироваться, а при хорошо организованной эксплуатации последствия загрязнения могут быть сведены к минимуму.

Правильная организация эксплуатации осветительных установок должна предусматривать: тщательную приемку осветительных установок после окончания монтажных работ и после капитальных ремонтов, своевременную смену ламп и чистку светильников, планово-предупредительный осмотр и ремонт светильников и электрической сети.

3.1 Замена ламп и чистка светильников.

Сохранность условий освещения, создаваемых осветительной установкой в процессе эксплуатации, зависит от ухода за ней и в значительной степени от своевременности замены источников света и содержания в чистоте осветительных приборов.

Самый простой и, сожалению, наиболее часто применяемый метод замены – это индивидуальный метод замены ламп, когда лампы заменяются по мере сгорания. Недостатком этого является длительное использование потерявших свою эффективность ламп и связанное с этим снижение освещенности, создаваемой осветительной установкой.

Очень важной, необходимой и трудоемкой частью работ по эксплуатации осветительных установок является периодическая очистка колб ламп и отражающих, рассеивающих и других поверхностей и деталей светильников от накопляющейся на них пыли и грязи.

Частота чистки светильников зависит от многих факторов и в первую очередь от среды освещаемого помещения. Так, светильники в цехах металлургического завода нуждаются в большей частоте обслуживания, чем установленные в коридоре больницы. Точно так светильники в шлифовальной мастерской должны чиститься чаще, чем светильники в зале заседания, расположенном в том же здании.

Количество чисток, определенные главой II-А, 9-71 СНиП «Искусственное освещение. Нормы проектирования» по количеству пыли, дыма и копоти, содержащихся в воздушной среде помещений и наружных пространств, указаны в табл.1

Количество чисток светильников.

Освещаемые объекты

Кол-во чисток

не менее

Производственные помещения, в воздушной среде которых содержаться пыль, дым и копоть в количествах:

10 мг/м3 и более

2 раза в месяц

От 5 до 10 мг/м3

1 раз в месяц

Не более 5 мг/м3

1 раз в 3 месяца

Вспомогательные помещения с нормальной воздушной средой и помещения общественных и жилых зданий

1 раз в 3 месяца

Площадки промышленных предприятий, в воздушной среде которых содержаться пыль, дым и копоть в количествах:

Более 5 мг/м3

1 раз в 3 месяца

До 0,5 мг/м3

1 раз в 6 месяцев

Улицы, площади, дороги, территории общественных зданий, жилых районов и выставок, парки, бульвары

1 раз в 6 месяцев

3.2 Приспособления для обслуживания светильников.

Особые трудности для эксплуатации осветительных установок вызывает обслуживание светильников, как правило, установленных на значительной высоте от пола (земли). Выполнение работ по замене источников света и загрязненных частей, участвующих в образовании светотехнической схемы светильников, зависит от наличия приспособлений или устройств для доступа к ним. Для этой цели в зависимости от высоты установки светильников могут быть использованы: приставные лестницы или стремянки, передвижные и самоходные телескопические и шарнирно-телескопические вышки, спускные устройства, подвесные и мостовые грузоподъемные краны, стационарные светотехнические мостики, автомашины с корзинкой или площадкой на раздвижной телескопической или шарнирно-телескопической вышке.

Приставные лестницы и стремянки. «Правилами технической эксплуатации электроустановок потребителей» обслуживание осветительных установок с этих устройств допускается при высоте подвеса светильников, не превышающей 5м, не менее чем двумя лицами. Длина лестниц и стремянок, должна быть такой, чтобы рабочий мог работать стоя на ступеньке, отстоящей на 1м от верхнего края лестницы, стремянки. Если стремянка имеет площадку – она должна быть ограждена на высоту 1м (рис. 7)

Рис.7 Стремянка.

Передвижные, телескопические и шарнирно-телескопические подъемники.

Телескопические подъемники широко и успешно применяются для обслуживания светильников наружного освещения, установленных на опорах или кронштейнах на стенах зданий на высоте 6м и более от уровня земли.

Применение для обслуживания светильников в промышленных зданиях передвижных телескопических подъемников, подобных изображенным на рис.8 и рис.9, малоэффективно. Эти подъемники обеспечивают узкий фронт работ, ограниченный размерами люльки. На подъем и опускание телескопа перед перемещением подъемника вручную с одной рабочей позиции на другую затрачивается большое количество времени. Как и при использовании лестниц и стремянок, светильники должны располагаться так, чтобы технологическое оборудование и выступающие части фундаментов не мешали установке подъемника. Недостатки подъемников такого типа являются причиной их весьма ограниченного применения в промышленности.

4.0 Планово-предупредительный осмотр, проверка и ремонт светильников.

Для обеспечения нормальной работы осветительной установки за ней нужен постоянный надзор. Во время эксплуатации необходимо осуществлять предупредительные периодические осмотры, проверки и ремонты элементов осветительного оборудования. Сроки осмотров и ремонтов устанавливаются службой электрохозяйства предприятия в соответствии с правилами технической эксплуатации в зависимости от среды помещения, особенностей и назначения элементов осветительного оборудования.

Осмотру, ремонту и проверке подлежат светильники, групповые и магистральные щитки, провода, выключатели, переключатели, штепсельные розетки. Рекомендуемые сроки планово-предупредительных осмотров и ремонтов всех перечисленных элементов осветительной установки указаны в табл. 2.

Осмотром и проверкой светильников должны устанавливаться: наличие, целостность и надежность закрепления рассеивателей, защитных стекол, экранирующих решеток, отражателей, надежность электрических контактов, состояние изоляции зарядных проводов, должны устанавливаться и устраняться возникающие неисправности в светильниках с люминесцентными лампами, причиной которых могут быть лампы, стартеры, ПРА, ошибки в схеме и др.

В установках с большим количеством люминесцентных светильников проверку их для обнаружения причин повреждения желательно производить на стенде в ремонтном отделении мастерской.

На стенде должны проверятся лампы и детали светильников, снятые с эксплуатации, и новые перед установкой. Схема такого стенда показана на рис. 10.

Работы по осмотру, проверке и ремонту светильников должны быть приурочены ко времени их чистки. Обнаруженные неисправные или пришедшие в негодность части и детали светильников должны заменяться при ремонте аналогичными новыми. Это, естественно, касается только достаточно легко снимаемых частей светильников, таких, как патроны, рассеиватели, защитные стекла, экранирующие решетки, стартеры, ПРА, уплотняющие прокладки и др. Если пришедшая в негодность часть светильника не может быть заменена, заменяется весь светильник.

К работам по ремонту светильников должны быть еще отнесены работы по восстановлению надежности контактных соединений и по замене зарядных проводов светильников с лампами накаливания и ДРЛ.

5.0 Техника безопасности при работе в электроустановках напряжением до 1000 вольт.

Меры по безопасности труда на различных производственных участках имеют свои особенности и предусматриваются специальными инструкциями. При работе ручным электроинструментом и применении переносных светильников существует опасность поражения электрическим током. К числу основных причин электротравматизма относятся временные электропроводки, выполнение с нарушением правил безопасности труда, выполнение работ без защитных средств и некачественное заземление электроинструментов. Основное условие безопасного производства работ – это строгое выполнение правил безопасности труда с непременным использованием индивидуальной защиты от поражения электрическим током. Применяемые понижающие трансформаторы, сварочное оборудование и производственные механизмы, проводимые в действие электрическим током, заземляются. Напряжение переносного электроинструмента должно быть не выше 220 вольт в помещениях без повышенной опасности, а в помещениях с повышенной опасностью и на открытом воздухе – 36(42) вольта, переносные светильники должны присоединятся к сетям напряжением 36(42) вольта. Для электрических паяльников следует применять напряжение 12 вольт.

Вилки и розетки на напряжение 12 и 36(42) вольта по конструкции отличаются от бытовых вилок и розеток.

Заземляющий контакт вилки несколько длиннее рабочих контактов. При использовании электроинструментов на напряжением 36(42) вольта необходимо диэлектрические перчатки, галоши и коврики или дорожки, изготовленные из резины. Всем лицам, пользующимися переносным электроинструментом, запрещается передавать его другим лицам, разбирать и ремонтировать как инструмент, так и провода.

5.1 Общие сведения.

При производстве ремонтных работ в мастерских и непосредственно на объектах монтажа используют многие механизмы, инструменты и приспособления, как общестроительного применения, так и специализированные электромонтажные. В мастерских создаются поточные технологические линии по индустриальной обработке и заготовке труб, листовой и сортовой стали, шин, комплектов электропроводок, кабелей и т.д. Для выполнения ремонтных работ (монтаж, демонтаж л. ламп) непосредственно на объектах комплектуют специализированные автомашины или автоприцепы и передвижные мастерские. Все машины, механизмы и средства механизации, применяемые в электромонтажном производстве, можно разделить на пять групп: механизированный и ручной инструмент, приспособления и другие средства малой механизации (электрифицированные, пневматические и пиротехнические инструменты, слесарно-монтажный и режущий инструмент, монтажные инверторные приспособления); сварочное оборудование (сварочные трансформаторы, оборудование для газовой сварки и резки); специализированные автомашины и передвижные мастерские; металлообрабатывающие станки и механизмы, сосредоточенные главным образом в мастерских и в ремонтных цехах; монтажные механизмы для погрузочно-разгрузочных и ремонтных работах (автомобильные краны, гидроподъемники и телескопические вышки, тали и лебедки, блоки и полиспасты), а также общестроительные механизмы (тракторы, бульдозеры и др.). Все перечисленное оборудование используется для ремонта освещения на высоте, или его демонтажа, если светильник невозможно отремонтировать на месте. При ремонте светильников л. освещения используют инструменты для соединения и оконцевания жил проводов и кабелей. Клещи КСИ – 1 предназначены для снятия изоляции с концов проводов сечением 0,75 – 4 мм 2 и их перекусывания и состоят из трех частей, связанных между собой шарнирно: рычагом для зажатия провода, рычага с ножами для надреза изоляции и рычага с ползунком – эксцентриком, перемещающим прижим и фасонный нож в губках клещей.

Клещи КУ (клещи универсальные) напоминающие по своему внешнему виду плоскогубцы, универсальны, ими можно выполнять шесть монтажных операций: перекусывание проводов, зачистку жил, вырезание перемычки, снятие изоляции, изготовление колечек и зажим провода.

Электросверлильные машины. В зависимости от диаметра сверления электросверлильные машины бывают трех исполнений: пистолетного типа для сверления отверстий малого диаметра (до 8 – 10 мм); с одной верхней закрытой рукояткой – для отверстий диаметром до 15 мм; с двумя боковыми рукоятками и грудным или винтовым упором – для отверстий диаметром более 15 мм.

Инвентарные лестницы. Лестница с площадкой служит для производства работ на высоте до 4,5 м. Опорные стойки сварные из алюминиевого листа, площадка размером 500 Х 600 мм с ограждением. Грузоподъемность 1 кН масса – 32 кг.

Складная лестница, сварная из алюминиевого листа, состоит из двух звеньев и может быть использована как приставная и как стремянка. Размер до верхней ступеньки в рабочем положении как приставной лестницы – 3280 мм, а как стремянки 2120 мм. Грузоподъемность в обеих положениях до 1 кН, масса – 11,5 кг.

Ремонт подразделяется на сложный и мелкий. Мелкий ремонт – это замена стеклянной колбы, стартера, дросселя или же производится изоляция провода внутри корпуса лампы на небольшой высоте (3 метра). Ремонт лампы производится с помощью стремянки или при помощи складной лестницы. Работу производят вдвоем. Один работает другой работник страхует (подает инструмент).

Сложный ремонт – это когда работа производится на большой высоте (в высотных цехах, на столбах освещения).

Тогда светильник снимается и ремонтируется в мастерской, и после ремонта светильник монтируют на место. В сырых помещениях коррозии подвергаются: корпус лампы, внутренности лампы, а также крепление светильника. Поэтому в сырых и влажных помещениях используют влагозащищенные лампы.

5.2 Правила работы с электрофицированым инструментом.

Перед началом работы с электроинструментом необходимо проверить:

Затяжку винтов, крепящих детали электроинструмента.

Исправность редуктора, поворачивая рукой шпиндель электроинструмента (при отключенном электродвигателе).

Состояние провода электроинструмента, целость изоляции, отсутствие излома жил.

Исправность выключателя и заземления.

Электроинструмент, понижающие трансформаторы, ручные электролампы и преобразователи частоты проверяют внешним осмотром. Обращается внимание на исправность заземления и изоляции проводов. Отсутствие оголенных токоведущих частей и соответствие инструмента условиям работы и напряжению питающей цепи.

Правильная эксплуатация электрифицированного инструмента обеспечивается соблюдением установленного режима (не допускать перегрева до температуры, при которой ладонь руки нельзя держать на корпусе). В процессе эксплуатации необходимо следить за состоянием смазки всех узлов и своевременно заменять ее.

5.3 Работа в электроустановках напряжением до 1000 вольт.

Работа в распределительных устройствах и нараспределительных щитах напряжением свыше 380 В могут производится при полном снятии напряжения и наложении переносных заземлений. При невозможности снятия напряжения в установках 380 вольт и ниже допускается работа под напряжением, но при условии строгого соблюдения следующих требований:

Работать в диэлектрических галошах или стоять на изолированном основании.

Пользоваться инструментом с изолирующими рукоятками, а при отсутствии его – работать в диэлектрических перчатках.

Оградить находящиеся под напряжением соседние токоведущие и заземлённые части.

Работать в головном уборе и в одежде с рукавами, застегнутыми или завязанными тесемками у кисти рук.

Список литературы:

1. В. Б. Атабеков, М. С. Жибов. «Монтаж осветительных электроустановок»

2. В.В. Мешков, М.М. Епанешников. «Осветительные установки»

3. М. Г. Лурье, Л. А. Райцельский, Л. А. Циперман. «Устройство, монтаж и эксплуатация осветительных установок»

4. Г. П. Егоров, А.И. Коварский «Устройство, монтаж, эксплуатация и ремонт промышленных электро-установок»